Saarland University
Faculty of Natural Sciences and Technology |

Department of Computer Science

Master’s Programme in Computer Science

Master’s Thesis

Automatically Verifying
"M" Modelling Language Constraints

submitted by

Thorsten Tarrach
<thorstent@live.com>

on 2010-08-31

Supervisor

Prof. Dr. Michael Backes
Advisor
Catalin Hritcu’

Reviewers
Prof. Dr. Michael Backes ' 2
Andrew D. Gordon 3

Saarland University
2Max Plank Institute for Software Systems
3Microsoft Research, Cambridge

Abstract

This thesis investigates the relationship between a type system and a general-purpose ver-
ification tool. We aim to statically verify typing constraints for a first-order functional lan-
guage featuring dynamic type-tests and refinement types by translating the code to a stan-
dard while language with assertions. Our translation generates assertions in such a way
that they express the same constraints in the while program as the typing constraints in the
original program. We use a generic verification condition generator together with an SMT
solver to prove statically that these assertions succeed in all executions. We formalise our
translation algorithm using an interactive theorem prover and provide a machine checkable
proof of its soundness. Additionally, we provide a prototype implementation using Boogie
(a generic verification condition generation back-end) and Z3 (an efficient SMT solver) that
can already be used to verify a large number of test programs.

Acknowledgements

[would like to thank Michael Backes for again letting me write a thesis at his chair. After
having successfully completed my Bachelor’s thesis at his chair, I know how much effort
Michael and his researchers put into supervising Bachelor/Master students.

[am also grateful to Andy Gordon for agreeing to review this thesis as a second reviewer.
[would also like to thank Andy and Microsoft Research Cambridge for making the source
code of DMinor available to us. Without this the implementation of my translation would
have been much harder.

[am profoundly indebted to my advisor, Catalin Hritcu, for his continuous support during
the last months. His help with Coq and the necessary proofs, explaining DMinor to me, his
advice on the implementation and countless hours in his office proved invaluable for the
success of this thesis. The fact that he took time during his holidays to correct this text
saved me a lot of stress in the final week before the deadline.

Last but not least, I would like to thank my friends, family and especially Sanja for their
understanding that [had little time for them in the past months.

“We all make choices, but in the end our choices make us.”
— Andrew Ryan (Bioshock)

Contents

1.

Introduction
1.1. Relatedwork
1.2. Contributions
1.3, OVEIVIEW o e e e e
DMinor
2.1. DMinorlanguage
211 Values.
2.1.2. Typesand expressionsot
2.2, SemantiCs e e
2.2.1. Big-stepsemanticsinCoq
222, Purity e
2.2.3. Environments and simultaneous substitution
2.2.4. Relating operational and logical semantics.
2.3. Examples
2.3.1. Accumulateexample
2.3.2. Example of an executionerror
2.3.3. Incompleteness of thetypesystem
Boogie
3.1. Boogielanguage
3.2. FormalisingasubsetofBoogie,
3.2.1. Embeddingofthelogic
3.2.2. EXpressions
3.23. Thecommands
3.2.4. Calling convention for procedurecalls
3.2.5. Operational semantics
3.2.6. Call-depth-indexed operational semantics
3.3. TheHoarerules
3.3.1. Definition of the semantic Hoaretriples
3.3.2. Lemmas for deriving semantic Hoare triples
3.3.3. Procedurecalls
3.3.4. SyntacticHoaretriples
3.4. InvertingHoarerules
3.4.1. Weakest precondition
3.4.2. Inversionfunctions

o U1 U1 B

Contents 2
3.5. Verification condition generation 32

4. Translation 34
4.1. Translation oftype-tests 34
4.2. Translation e 34
4.3. Examples e e 38
43.1. Accumulateexample 38

4.3.2. Example of an executionerror 39

4.3.3. Incompleteness ofthetypesystem 40

4.4. Soundnessproof 40
4.4.1. Intuitionoftheproof L. 41

4.4.2. Closedness of the expressionintheproof 44

4.4.3. Relation with Hoarelogics 44

4.4.4. Relation with verification condition generation 45

4.4.5. Relationtothetypesystem 45

5. Implementation 47
5.1. DMinortype-checker 47
5.2. Boogietool 47
5.3. Some implementationdetails 48
5.4. Axiomatisation 49
54.1. TheGeneralsort. 49

5.4.2. TheValuesorty 51

5.4.3. Axiomatisation of DMinor operations 51

5.5. Quantitative comparison of DMinor and DVerify 53
5.5.1. Testsuiteand precisiony 54

5.5.2. Verificationtimes 54

5.5.3. Example where DVerify is more precise 56

5.6. Qualitative comparison of DMinor and DVerify 57

6. Conclusion 60
6. 1. SUMMATY o o e e e e 60
6.2. Futurework e 60
6.2.1. Implementation 60

6.2.2. Theory 64
Bibliography 66
A. DMinor big-step semantics 70
B. Complete Coq definitions 75
Bl Imp.v e 76
B.1.1. Embeddingofthelogic 77

B.1.2. EXpressions e 77

B.1.3. Thecommands, 79

Contents 3

B.1.4. Calling convention for procedurecalls 80
B.1.5. Operational semantics 80
B.1.6. Call-depth-indexed operational semantics 82
B.2. Hoareww e 84
B.2.1. Definition of the semantic Hoare triples 84
B.2.2. Lemmas for deriving semantic Hoare triples 86
B.2.3. Procedurecalls 89
B.2.4. SyntacticHoaretriples 90
B.3. SubstState.v 92
B.3.1. Simultaneoussubstitution 93
B.3.2. Relating operational and logical semantics. 95
B.4. Translate.v 95
B.4.1. Lemmas for the soundnessproof 98
B.5. Soundness.v. e 102
B.5.1. Additional lemmas for the entitycase 102
B.5.2. Additional lemmas for the accumulatecase 104
B.5.3. Closedness of the expressionintheproof 106
B.5.4. Relation with Hoarelogics 106
B.5.5. Relation with verification condition generation 107
B.5.6. Relationtothetypesystem 107

C. Complete axiomatisation 108

1. Introduction

In this thesis we investigate the relationship between a type system and a general-purpose
verification tool. Both sophisticated type-checkers and general-purpose verification tools
are used to check programming constrains statically; the former one using, for instance,
dependent and refinement types, the latter one using assertions. We bring these two ap-
proaches together by defining a translation from a language with refinement types to a
language with assertions and prove that they can indeed verify the same properties.

We start with DMinor, a first-order functional language featuring dynamic type-tests and
refinement types, for which a type-checker is already available [BGHL10]. DMinor is a sub-
set of a more general language called "M".

"M" is a programming language currently developed by Microsoft that allows the modelling
of domains using text. Domains are defined as any collection of related concepts or objects.
Modelling domains consists of selecting certain characteristics to include in the model and
implicitly excluding others deemed irrelevant [Mic09]. Microsoft provides tools to export
"M" models into SQL Server databases, where the types become tables and the functions
stored procedures [Sel09]. "M" comes as part of Microsoft’s SQL Server Modeling Services
and is expected to ship with a future major release of SQL Server [Mic].

The DMinor language is expressive enough to encode the whole "M" language. It is devel-
oped by Microsoft Research Cambridge with the goal of statically type-checking "M" pro-
grams [BGHL10].

In order to emulate the DMinor type-checker using a general-purpose verification tool we
translate the code to Boogie, a while language with assertions, which are statically checked
by the Boogie verification condition generator back-end.

Both the intermediate language and the verification condition generator are called Boogie
and they are developed by Microsoft Research as a back-end for verification tools, such as
the Verified C Compiler (VCC) [DMS'09] and Spec# [BLSO05].

Both Boogie and DMinor require a theorem prover to discharge the proof obligations they
generate and both use by default Z3. Z3 is an automated theorem prover for Satisfiability
Modulo Theories [RT06a]. It is sound but not complete; that means it may produce false
negatives by rejecting formulae that actually hold [DMB08].

To formalise our translation and prove it sound we use Coq [BBCT09], an interactive the-
orem prover. It mechanically checks our proofs and thus provides a high degree of confi-
dence in our theoretical results.

1.1. RELATED WORK 5

Lastly we use F# [Mar10] for our implementation. F# is a functional programming language
that also encompasses imperative object-oriented programming paradigms.

1.1. Related work

Work on program verification was pioneered by Hoare and Floyd in the late 60s [Hoa69]
[Flo67]. Winskel provides an excellent introduction to while languages, Hoare logics and
verification condition generators in [Win93]. Pierce et al. formalised a simple while lan-
guage in Coq in the Software Foundation course [PCG'10] and give Hoare rules for the com-
mands in their while language; we use these Coq files as a basis for our formalisation.

Nipkow formalises Hoare logic for a while language with local variables, non-determinism,
exceptions and, most important, (mutually) recursive procedures [Nip02b] [Nip02a]. Al-
though Nipkow’s formalisation is done in Isabelle/HOL, we use most of the ideas from his
paper as a starting point for the Hoare logic we define in this thesis.

Automatic program verification has been worked on for a long time and there are a variety
of tools available. Leino describes in [Lei05] the weakest precondition generation which is
the heart of Boogie. There is also ESC/Java [FLL*02], one of the leading program checkers
of its kind, which verifies Java bytecode, but is neither sound nor complete. In the Mobius
project [Mob06] two verification condition generators for Java bytecode were created. One
of them translates Java bytecode to Boogie and this translation was proven sound in Cog.

There is also a long history of building type-checkers for programs [Pie02]. Although type-
checkers usually only check for simple programming errors, such as trying to add a string
to a number, there have been type-checkers developed that can process complicated spec-
ifications expressed using refinement types. Backes et al. developed a type-checker for
verifying security protocols modelled in a variant of the Spi calculus [AB05] which can deal
with dependent and refinement types [BHMO08]. Bengtson et al. developed a security type-
checker called F7 that works on top of F# and is capable of statically verifying properties
expressed with dependent and refinement types [BBF08] [BFG10].

Relating type systems and software model-checkers is a topic that has received attention
recently from the research community [KO09] [NP08] [JMR10]. However, our approach is
different in that we relate a type system to a more traditional verification approach using
Hoare logic and a verification condition generator.

1.2. Contributions

This thesis focuses on employing a general-purpose verification tool to achieve the same
goal as the DMinor type-checker: Statically verifying that DMinor programs do not cause

1.3. OVERVIEW 6

type-errors when executed. Our approach is interesting because a general-purpose verifi-
cation tool opens up the possibility to take advantage of the huge amount of proven tech-
niques and ongoing research done on such verification tools. This will allow us for example
to use techniques for loop invariant inference [BHMRO07] or to implement extensions to the
"M" language such as mutable state more easily. Most importantly however, we show that,
for the first-order functional language we are considering, a generic verification tool can
check the same properties a sophisticated type-checker can. With our translation algo-
rithm we create a strong link between these two areas of ongoing research.

This thesis consists of two parts: A theory part and a practical part, whereas the focus is
on the theory. On the theory side we formalised a subset of the Boogie language, which we
need for our translation. We also formalised Hoare logic rules for this subset, proved them
sound and formalised a verification condition generator, which we proved sound as well.
Finally, we formalised our translation from the functional DMinor language to the impera-
tive Boogie language and proved that our translation is sound. Soundness guarantees that,
if a DMinor program raises a runtime error, then Boogie will reject its translation. If Boogie
accepts the translation of a DMinor program, then the program does not cause runtime er-
rors and, since the translation preserves operational behaviour, the transformed program
returns the same results* as the original one.

On the practical side we wrote a tool in F# that takes DMinor source code and outputs a
Boogie file. This translation is partial in the sense that there are valid programs that cannot
be translated. It successfully works on a large set of DMinor programs, mostly taken from
the DMinor test suite, and the vast majority of those translated files pass through Boogie
with the same result as in DMinor. A more detailed analysis is given in Section 5.5.

1.3. Overview

Chapters 2 and 3 introduce DMinor and Boogie respectively. In both chapters we use the
Coq notation to define the syntax and semantics of the languages. In Chapter 4 we intro-
duce our translation algorithm and prove it sound. We also give a number of examples to
illustrate the translation. Our implementation is introduced in Chapter 5, where we also
compare our tool-chain to the DMinor type-checker. Finally, in Chapter 6 we conclude and
give some ideas for future work.

The appendices list relevant code for reference purposes. Appendix A lists a part of the
DMinor formalisation, Appendix B lists selected Coq files that are part of our formalisation
and, last but not least, Appendix C lists an important part of our implementation.

1Since DMinor programs can be non-deterministic, there is a set of possible results a program can return.

2. DMinor

DMinor is a first-order functional programming language developed by Microsoft Research
and based on the "M" programming language [Mic09]. It supports refinement types (the
type of values satisfying a boolean expression) [BBF08] and type-tests (boolean expres-
sions that determine at run-time whether a value has a specific type) [BGHL10]. Functions
in DMinor can have pre- and postconditions in the form of refinement types.

DMinor supports semantic subtyping [FCB08], which means that pure expressions (i.e. ex-
pressions without side-effects) are interpreted as first-order terms and types as logical for-
mulae. Subtying is then “semantically” defined as a valid implication between the interpre-
tations of types. Z3 is used to determine the validity of the implication.

Syntactically DMinor is closely related to "M", but with the ambiguity of "M" removed. Part
of the metatheory of DMinor was already formalised in Coq [BGHL10] and we build on top
of this formalisation

2.1. DMinor language
We will explain the language elements in more detail now.

2.1.1. Values

Values in DMinor can be simple values (such as integers, strings, logicals or Null values),
collections or entities.

General e Integer
o Text
e Logical
e Null
Collection A collection is a finite multi-set of values.
Entity An entity is a finite set of label-value pairs. In other programming lan-

guages this value is commonly called a record.

2.1. DMINOR LANGUAGE 8

2.1.2. Types and expressions

The following Coq code excerpt is taken from the DMinor formalisation. It shows the defi-
nition of types and expressions, which are mutually recursive.

Inductive MType: Type:=
| Any : MType
| Integer : MType
| Text : MType
| Logical : MType
| Coll : MType — MType
| Entity : string — MType — MType
| Refine : string — MType — Exp — MType
withExp: Type:=
| Var : string — Exp
| Value : Value — Exp
| UnOp : UnOp — Exp — Exp
| BinOp : BinOp — Exp — Exp — Exp
| If : Exp — Exp — Exp — Exp
| Let : string — Exp — Exp — Exp
| In: Exp — MType — Exp
| Entity : list (string x Exp) — Exp
| Dot : Exp — string — Exp
| Add : Exp — Exp — Exp
| Acc : string — Exp — string — Exp — Exp — Exp
| App : string — Exp — Exp.

Types

DMinor has a number of build-in types. There are four primitive types:

Any The Any type is a top type and all values are in this type.

Integer Integers in DMinor are not restricted to a certain range as in other pro-
gramming languages. All basic mathematical operations except division
are supported on integers.

Logical Logical is usually called boolean in other languages and supports all op-
erations on booleans one would expect.

Text Text is the type of strings, but unlike in other programming languages the
only operation on texts is comparison.

There are three composite types that can be mutually recursive.

Coll T A collection type is the type of collections containing only elements
of type T.

2.1. DMINOR LANGUAGE 9

Entity x T An entity type is the type of an entity that has (atleast) a field named
x holding data of type T. Entity types have only one field because an
entity with several fields can be represented using an intersection
type. Intersection types can be encoded using refinements, type-test
and boolean conjunction; the details are given in [BGHL10]

RefinexeT A refinement type is a type with an additional boolean constraint
e. A value v is an element of type Refine x e T if v has type T and
additionally the expression e{v/x} evaluates to true.

Refinement types can be used to encode pre- and postconditions for functions. Further-
more refinement types can only use pure expressions, see Section 2.2.2.

Other types, like union, intersection and negation types can be represented using refine-
ment types and dynamic type-tests [BGHL10].

Expressions

DMinor defines a number of expressions, most notably type-testing.

Var x Returns the value of variable x.
Value v Returns the constant v.
UnOp @ e Applies the unary operator @ to e. The only unary operator in DMi-

nor is logical negation.
BinOp ©ele2 Applies the binary operator & to el and e2. A complete list of oper-
ators can be found in [BGHL10].

Ifele2e3 Evaluates el as a guard and evaluates e2 if the guard is true and e3
otherwise.

Letxele2 Assigns el to x and evaluates e2.

IneT Returns true if e is in type T, false otherwise.

Entity el el is a list of label-value pairs and Entity returns a new entity. Al-

though entities can also be created with the Value expression, this
expression allows to create entities that are not constant and contain
computed values. It is needed because entities cannot be updated
once they are created.

Dotel Retrieves the value in field | of entity e.
Add el e2 Returns a new collection in which an element el is added to the col-
lection e2.

Accxelye2e3 Accumulate first evaluates elto acollection and e2 to an initial value.
It then executes e3 for every element in the collection. x holds the
current element from the collection and y begins with the initial
value and then holds the value from the last iteration.

Appfe Calls function f with argument e. Multiple arguments can be encoded
using entities.

2.2. SEMANTICS 10

2.2. Semantics

Above we gave an informal description of the semantics of DMinor. Bierman et al. give three
equivalent formal semantics for DMinor [BGHL10].

First is a quite standard small-step operational semantics. Secondly, they give a logical se-
mantics, which is only valid for pure expressions. The logical semantics interprets expres-
sions as first-order terms and types as formulae and is used for semantic subtyping. The
logical semantics is formalised using three mutually recursive functions: R returns a first-
order logic term denoting the result of pure expressions. F tests if a value is in a specific
type and W tests if a type-test goes wrong. The reason for the existence of the W function
is that F is total and has to return a boolean value even if a type-test inside a refinement
type raises an error. In the formal development we are only considering the error tracking
logical semantics.

Third is a big-step semantics that is defined as a relation from an expression to either an
Error or to Return(v), where v is the value that is returned. Errors are generated in a
number of situations, for example in case one tries to access a field in an entity that does
not have this field, or one tries to feed operands of a wrong type to an operator. A type-
test can generate an error not only if the subexpression that is to be tested generates an
error, but also if the type is refined with an expression that returns an error. All expressions
bubble up errors if one subexpression returns an error and there is no way to recover from
an error.

2.2.1. Big-step semantics in Coq
In our soundness proof in Section 4.4 we relate our translation to the big-step semantics,
which is formalised in Coq using the Eval relation.

Inductive Result: Type:=
| Error : Result
| Return : Value — Result.

Inductive Eval: Exp — Result — Prop.

The Eval relation takes an expression and returns a Result. Unlike a function, a relation
needs neither to be total nor deterministic.

A complete listing of the big-step semantics can be found in Appendix A.

2.2. SEMANTICS 11

2.2.2. Purity

The notion of purity is important for several parts in our translation. As stated above, the
logical semantics is only defined on pure expressions and refinement types may only con-
tain pure expressions. We quote Bierman et al. here [BGHL10]:

“The gist is that pure expressions must be terminating, have a unique result (which may be
Error), and must only call functions whose bodies are pure.”

2.2.3. Environments and simultaneous substitution
Environments

An environment in DMinor maps variable names to values.
Definition Env := string — Value.
Definition env_empty (x: string) := v_null.

Definition env_update (env: string — Value) (x : string) (v: Value) :=
funy=-if beqg_strxy thenvelseenvy.

The environment is updated by returning a new function that returns the new value for the
variable that is updated and the old value for any other variable.

Substituting free variables

We implement a simultaneous, capture-avoiding substitution subst_state : Exp — Env —
Exp that eliminates all free variables from an expression and replaces them with the value
from from an environment. The full code for the substitution algorithm is given in Ap-
pendix B.3.1. We also define a similar substitution function for types: subst_state_t : MType
— Env — MType.

2.2.4. Relating operational and logical semantics.

For our translation we need a relation between the operational and logical semantics with
respect to type-tests. While in the DMinor formalisation a relation between R and the big-
step semantics is already proven, we prove a relation between F and the big-step semantics
and between W and the big-step semantics. For F we prove that, if the big-step semantics
returns b for testing if x is in T, then F also returns b, where b is either true or false.

Lemma eval_F: Vb Txst,
contains_impure_expressions (subst_state_t T st) = false —
Eval (In (Value x) (subst_state_t T st)) (Return (v_logical b)) —

2.3. EXAMPLES 12

FTxst=h.

In order to relate W to the big-step semantics, we prove that, if the big-step semantics re-
turns an Error, W will return true.

Lemma eval W : VT x st,
contains_impure_expressions (subst_state_t T st) = false —
Eval (In (Value x) (subst_state_t T st)) (Error) —
W T x st = true.

If the evaluation returns a value, then W returns false.

Lemma eval_W_false : VT x stv,
contains_impure_expressions (subst_state_t T st) = false —
Eval (In (Value x) (subst_state_t T st)) (Return v) —
W T x st = false.

2.3. Examples

2.3.1. Accumulate example

This example shows a very simple accumulate that filters out all null values from a collection
c¢. For simplicity the collection we accumulate over is a parameter of our definition. On
each iteration one element x form this collection is compared to the null value and if this
comparison returns false, x is added to the resulting collection y.

Definition acc_sample coll :=
(Acc x (Value coll) y (Value empty_coll)
(If (BinOp OEq (Var x) (Value v_null))
(Vary)
(Add (Var x) (Vary))

))-

2.3.2. Example of an execution error

In this example we show how a refinement type can cause an execution error. We test if
v_tt (the true value) is of type Any and is greater than 5. Since the greater operator only
accepts operands of type Integer, v_tt is not an acceptable operand. Therefore, in DMinor
this causes an execution error.

Definitionin_sample :=
In (Value v_tt) (Refine v Any (BinOp OGt (Var v) (Value (v_int 5)))).

We prove that this program evaluates indeed to Error using the big-step semantics.

2.3. EXAMPLES 13

Lemma in_sample_err : Eval in_sample Error.

2.3.3. Incompleteness of the type system

This example is similar to the one above, but this time we test if 5 is greater than 5. Accord-
ing to the operational semantics this is a valid type-test that will return v_ff (the false value).
We show that this example is rejected by the DMinor type system due to the incompleteness
of the type system with respect to the operational semantics.

Definitionincom_sample :=
In (Value (v_int 5)) (Refine x Any (BinOp OGt (Var x) (Value (v_int 5)))).

We prove that according to the big-step semantics this indeed evaluates to v_ff.
Lemma incom_sample_big : Eval incom_sample (Return v_ff).

Since the expression is pure, the logical semantics is also defined for this expression and it
also evaluates to v_ff.

Lemma incom_sample_logical : R incom_sample env_empty = Return v_ff.

However, the expression fails to type-check in the type system. The reason is that our re-
finement type Refine x Any (...) specifies type Any for the variable x and the greater operator
BinOp OGt (Var x) (Value (v_int 5)) does not type-check successfully with an argument of
type Any. It does not matter that the actual type of the variable x during execution is indeed
an Integer.

Lemma incom_sample_type : = envT_empty - incom_sample : Logical.

The complete DMinor type system is given by Bierman et al. [BGHL10]. We will come back
to this example when we relate our translation to the type system in Section 4.4.5.

3. Boogie

Boogie is an intermediate language and a static verification tool developed by Microsoft
Research [Lei08] [BCD*06] [DLO5] [BLO5]. Programs written in other languages, such as C
and Spec# [BLS05], are translated to Boogie as an intermediate step and Boogie then veri-
fies that the pre-, postconditions and asserts in the code hold. Boogie works by generating
verification conditions and then checking them using an SMT solver.

3.1. Boogie language

In principle Boogie is a while language that supports certain additional commands like as-
sume and assert for example. An assert takes a boolean expression and statically checks if
that formula holds at a certain point in the program during any program run. Asserts are
not necessarily computable, for example they can quantify over infinite structures. Boogie
also supports manually adding assumptions and will only consider program runs where
that assumption holds. If a false assumption is introduced to a branch, then that branch is
always considered correct.

3.2. Formalising a subset of Boogie

As one of the main goals of this thesis we want to prove the translation from DMinor to
Boogie sound. In order to do that, we need a formal representation of both Boogie and
DMinor. We use the existing formalisation of DMinor as the source of our translation and
we formalise Boogie as the target.

We do not formalise the full Boogie language, but only the subset which is relevant for our
translation. Still, the subset of Boogie we formalise is considerably more expressive than a
standard while language. Our formalisation supports collections, records, asserts, mutually
recursive procedures, variable scoping and evaluation of logical formulae. Not all of these
constructs are primitive in Boogie, but we encode the ones that are not primitive in our
implementation described in Chapter 5.

14

3.2. FORMALISING A SUBSET OF BOOGIE 15

3.2.1. Embedding of the logic

Some of the expressions and commands we define, such as type-tests and assertions, need
to evaluate logical formulae, which may include quantifiers for instance. Generally speak-
ing we could give a shallow or a deep embedding for these formulae. When using shallow
embedding, logical formulae are written directly in the interactive theorem prover’s logic
as a function from Env to bool. Whereas for deep embedding one devises a datatype in the
theorem prover that represents the syntax of these formulae and gives an evaluation func-
tion for this datatype. There is a more in-depth discussion of shallow vs. deep embedding
in [WNO4].

Deep embedding has the advantage that the power of the logic can be controlled. In our
case we could have wanted to limit our logic to first-order. Nevertheless, we chose shallow
embedding because the workload associated with defining and proving properties of syn-
tactic operations on formulae would have been too high and there would be little benefit
for this thesis. Nipkow makes the same decision for embedding logical formulae in Isabelle
for his while language in [Nip02b].

Definition Assertion := Env — bool.

We enforce classical logic in our assertions by representing assertions as functions to bool,
which satisfies the property of excluded middle. As Coq does not define quantifies for bool,
we defined our own using a strong variant of the excluded middle axiom:

Definition forall_bool (A: Type) (P: A — bool) : bool :=
match ClassicalEpsilon.excluded_middle_informative (V x, P x = true) with
| left Ptrue = true
| right Pfalsee = false
end.

3.2.2. Expressions

The syntax of our while language is separated into two distinct classes: expressions, which
are side-effect free, and commands, which have side-effects.

Our expressions allow basic operations on values, most of which directly correspond to
the operations in DMinor. As for the Value type in the formalisation we assume that these
expressions are native to Boogie; for the real Boogie tool we axiomatise them.

Inductive expr: Type:=
| EValue : Value — expr
| EVar : string — expr
| ECollAdd : expr — expr — expr
| EColIRem : expr — expr — expr
| ECollEmpty : expr — expr
| EEntUpd : string — expr — expr — expr

3.2. FORMALISING A SUBSET OF BOOGIE 16

| EDot : expr — string — expr

| EIn : Assertion — expr

| EOr : expr — expr — expr

| ENot : expr — expr

| EEQ : expr — expr — expr

| ELt : expr — expr — expr

| EGt : expr — expr — expr

| EPlus : expr — expr — expr

| EMinus : expr — expr — expr
| ETimes : expr — expr — expr
| EAnd : expr — expr — expr.

Some of these constructs need further explanation, so we focus on the ones that do.

EValue v
EVar x
ECollAdd ce

ECollRem ce

ECollEmpty c
EEntUpdIve

EDot e |
Elna

Evaluates to a constant value v.

Looks up the variable x in the current state (environment).

Return a new collection that contains all the elements of c as well as the
element e.

Returns a new collection that contains all the elements of c except for e. If
eisnotinc, then cisreturned. If e is in the collection multiple times, only
one instance is removed. This functionality is not present in DMinor, but
can be encoded there. We need this expression to translate accumulate.
Tests if the collection c is empty.

Returns a new entity that contains all the label-value pairs of e as well as
the label | and the corresponding value v. This expression is not present
in DMinor and cannot be encoded easily, but it could be added as a prim-
itive easily. We need it to construct entities.

Retrieves the value with the label | from the entity e.

Eln is a special construct that is used to translate the type-test (in) from
DMinor. Given the assertion a it evaluates this assertion to either true
or false as a value. A typical type-test to test if variable x is an integer is
translated as EIn (fun env : Env = F Integer (env "x") env).

The remaining expressions work in the same way as their DMinor counterparts.

The semantics of expressions is defined using an evaluation function that takes a state and
the expression to evaluate. It returns a Result, which can either be an Error or the value the
evaluation yields (see Section 2.2.1). Error is used to signal runtime errors, and is returned
for example when an integer is added to a string. We only show the most interesting cases
here, the full code can be found in Appendix B.1.2.

Program Fixpoint eeval (st: Env) (e: expr) {struct e}: Result:=

match ewith

| EValue v = Return v
| EVar x = Return (st x)

3.2. FORMALISING A SUBSET OF BOOGIE 17

| ECollAdd c e = LBind (eeval st c) (func =

(LBind (eeval st e) (fune =

ifis_C c then Return (v_add e c) else Error)))
| ECollEmpty ¢ = LBind (eeval st ¢) (func=

ifis_Cc then Return (v_empty c) else Error)
| ECollRem c e = LBind (eeval st ¢) (func=

(LBind (eeval st e) (fune =

ifis_Cc then Return (v_remove e c) else Error)))
| EEntUpd | v e = LBind (eeval st v) (fun val =

(LBind (eeval st e) (fun ent =

ifis_E ent then Return (v_eupdate | val ent) else Error)))
| EDot e | = LBind (eeval ste) (fun x =

ifis_E x A v_has_field | x then Return (v_dot | x) else Error)
| EIn a = Return (v_logical (a st))

end.

LBind is used to bubble up errors from subexpressions. Some constructs need guards, for
instance evaluating EDot first makes sure e is actually an entity and has the field I. This
is required because v_dot is a total function that will return a value for every input. The
guards make sure an error is returned if the input is of a wrong type.

3.2.3. The commands

The first five commands are standard for a while language [Win93]. Evaluation of our com-
mands works by relating two states (environments), a starting state and a result state (or

an error state).

skip

cl; c2

l:=a

if xb then el else e2

while b inv a do c end

This command does nothing.

A sequence first executes c1 and then c2.

Assigns the result of the expression a to the variable I.

If xb is true then el is executed, otherwise e2. xb is a variable,
not an expression. This ensures that the evaluation of the guard
cannot yield an error, which simplifies the Hoare rule for condi-
tionals.

This while loop executes until the guard expression b evaluates
to false. c is the body of the loop. The while command takes
an additional assertion as an argument, which is operationally
ignored, but used in verification condition generation.

In addition to these standard commands, we add the following ones:

asserta If the logical formula a is valid this command does nothing, otherwise it
returns a CError.

3.2. FORMALISING A SUBSET OF BOOGIE 18

x := pick xc This command non-deterministically chooses an element from a collec-
tion xc and writes this element into variable x. The reason this is a com-
mand and not an expression as the other operations on values is that Pick
isnon-deterministic, which cannot be modelled with the evaluation func-
tion for expressions, because said function has to return a single value.
Pick is less general than the non-deterministic choice operator Nipkow
defines [Nip02b], but is all we need for our translation.

callP We have a global collection of procedures, which are called using the call
command that takes only the name of the procedure to call. For proce-
dure calls, operationally the callee works on the same variables as the
caller. This makes variables global in a sense. There are no arguments or
return values specified by the command, these are established below by
a calling convention.

backup xinc This command backs up the values of all variables, executes ¢ and re-
stores all values except for variable x. The intended use is a procedure
call where all variables become local except for the return value x.

The formal definition of commands is a follows.

Inductive com: Type :=
| CSkip : com
| CAss : string — expr — com
| CSeq : com — com — com
| CIf : string — com — com — com
| CWhile : expr — Assertion — com — com
| CAssert : Assertion — com
| CPick : string — string — com
| CCall : proc_name — com
| CBackup : string — com — com.

3.2.4. Calling convention for procedure calls

For procedure calls we use the following calling convention: Procedures take one argument,
which is copied by the caller into the variable "arg". Multiple arguments can be encoded
using an entity. The result is put into a variable called "ret" that is then copied by the caller
into the designated return variable. A backup command makes sure no other variables but
the return variable x are changed.

Definition call_arg :="arg".
Definition call_ret := "ret".
Definition fun_callxie:=
(backup x in (call_arg := e; (call i); x := EVar call_ret)).

3.2. FORMALISING A SUBSET OF BOOGIE 19

The next command starts a module. This is a technicality that allows us to instantiate the
module with a set of procedures. Otherwise the set of procedures would have to be passed
to every function or be fixed at this point. We fix the procedures later in our translation.
Since a module has to end when the Coq file ends we start a new module in every file. But
all the modules have in common that they leave certain parameters for later instantiation.
This module contains the operational semantics of commands.

Module Type ImpArgs.

Parameter procs: proc_name — com.
End ImpArgs.
Module ImpM (Args : ImpArgs).

3.2.5. Operational semantics

We define a big-step semantics for our while language. As for the big-step semantics in
DMinor (see Section 2.2.1) our evaluation can cause runtime errors. In the case that the
evaluation is successful it results in a new state, otherwise it results in a CError.

Inductive CResult :=
| CError : CResult
| CReturn : Env — CResult.

Technically, our operational semantics is not defined with an evaluation function, but with
arelation, just as the DMinor big-step semantics (see Section 2.2.1).

Runtime typing errors are handled by divergence. Divergence means that for a specific pair
of command and state there does not exist a relation to continue evaluating from there. This
can happen for instance when an expression in an assignment returns Error, or when we
try to pick an element from an empty collection.

One such typing error would be the following command, which tries to add 42 to false:
x := EPlus (EValue (v_int 42)) (EValue (v_ff))

Since Boogie checks only for partial correctness, divergence is considered correct because
the program never finishes. In our translation we avoid this by adding enough asserts so
that every typing error becomes a CError in Boogie. This is consistent with how the Boo-
gie tool works. Boogie has no way to type-check the custom operations we define on sort
Value, so that we need to add enough asserts to check the parameters before executing a
command.

Inductive ceval : Env — com — CResult — Prop :=
| CESkip : V st,
skip / st ~~ (CReturn st)
| CEAss : V st al (n:Value) |,
eeval st al = (Return n) —
(I:=a1) / st ~ CReturn (env_update st | n)

3.2. FORMALISING A SUBSET OF BOOGIE

20

| CESeq : V c1 c2 stst’ st”,
c1 / st ~ CReturn st’ —
c2 /st ~» st —
(c1; c2) / st~ st”
| CESeqErr: V c1c2 st,
cl / st ~ CError —
(c1; c2) / st ~ CError
| CEIfTrue : Vstst’ blclc2,
syn_beg_val (st b1) v_tt = true —
cl /st~ st/ —
(if bl then c1 else c2) / st ~ st/
| CEIfFalse : Vst st’ bl cl c2,
syn_beg_val (st b1) v_tt = false —
€2 /st~ st/ —
(if bl then c1 else c2) / st ~ st/
| CEWhileEnd : ¥ bl b alstcl,
eeval st b =Return bl —
syn_beq_val b1 v_tt = false —
(while b inv al do c1 end) / st ~~ CReturn st
| CEWhileLoop : Vst st’ st” bl balcl,
eeval st b =Return bl —
syn_beq_val bl v_tt = true —
cl / st ~ CReturn st’ —
(while b inv al do c1 end) / st ~ st” —
(while b inv al do c1 end) / st ~ st”
| CEWhileLoopErr: Vstblbalcl,
eeval st b = Return bl —
syn_beq_val bl v_tt = true —
cl /st ~ CError —
(while b inv al do cl1 end) / st ~~ CError
| CEAssert : V (st:Env) (b:Assertion),
b st =true —
(assert b) / st ~~ CReturn st
| CEAssertErr: Vst b,
b st = false —
(assert b) / st ~» CError
| CEPick : Vst x xcv,
is_C (st xc) = true —
v_memv (st xc) = true —

(x := pick xc) / st ~» CReturn (env_update st x v)

| CECall : V st st’ pn,
Args.procs pn / st ~ st’ —
(call pn) / st~ st/

| CEBackup : Vstst’' v,

3.2. FORMALISING A SUBSET OF BOOGIE 21

¢ / st ~ (CReturn st') —

(backup v in c) / st ~ CReturn (env_update st v (st’ v))
| CEBackupErr: Vstvc,

¢ / st ~ CError —

(backup vinc) / st ~ CError
where "c1 / st ~ st' := (ceval st c1 st).

The pick command is non-deterministic if the collection contains more than one element.
The only command that can produce a CError is assert. The remaining commands simply
bubble up errors produced by a nested assert somewhere.

3.2.6. Call-depth-indexed operational semantics

As done by Nipkow [Nip02b], we define a second version of the above semantics that limits
the maximum call depth to n and thereby guarantees that the program does no more than n
nested procedure invocations. We need this trick to prove the soundness of the Hoare rules
for the call statement. The call statement is the only statement that actually changes the
index by decreasing it by 1 and it diverges if the index is not at least 1. Evaluating all other
commands leaves the index unchanged.

Inductive ceval_indexed : Env — com — nat — CResult — Prop :=

| CEnCall : V st st’ pnn,
Args.procs pn / st—n ~ st’ —
(call pn) /st —Sn~ st/

where "cl1'/'st'—'n'~'st" := (ceval_indexed st c1 n st’).

One of the properties of this new semantics is that, if the command evaluates without di-
verging in il steps, it will also evaluate without diverging for every larger number of steps
and the resulting state is the same.

Lemma ceval_step_more: Vili2 stst’c,
i1<i2—c/st—il~st —
c/st—i2~ st

The following Lemma relates the two semantics by stating that there exists an n, for which
the call-depth-indexed semantics gives the same result that the original one gives.

Lemma exec_iff_execn: V c st st/,
c/st~st'<3dn,c/st—n~st.

3.3. THE HOARE RULES 22

3.3. The Hoare rules

The Hoare module is all about defining the Hoare logic of our commands. It is based on
the Hoare chapter in [PCG™10] and takes many ideas presented by Nipkow [Nip02b]. The
Hoare rules are needed to prove the verification condition generator sound in Section 3.5.

The Hoare module needs in addition to the procedure list also a type parameter, which we
call ZType. Its purpose becomes obvious later. We require that ZType is inhabited.

Module Type HoareArgs.
Parameter procs: proc_name — com.
Parameter ZType: Type.
Parameter ZType_inhabited : ZType.
End HoareArgs.
Module HoareM (Args : HoareArgs).
Module ImpSpecificArgs := ImpM Args.

3.3.1. Definition of the semantic Hoare triples

As done in [PCG™10], we start by working with semantic Hoare triples. We then define the
corresponding syntactic triples and prove them sound using the semantic ones.

An assertion now depends on an auxiliary variable of type ZType. This definition shadows
the original definition of assertions, which is still available under the name Imp.Assertion.

Definition Assertion := Args.ZType — Env — bool.

Since assertions are functions themselves evaluating them is done simply by passing them
the state they should be evaluated against. However, because our evaluation relation for
commands can produce errors, checking the postcondition is not as easy as the precon-
dition. Our semantics for checking the postcondition is that, if the evaluation returns a
CError, then the postcondition is constantly false, irrespective of the assertion. In case
the evaluation succeeded and returned a new state the postcondition is evaluated against
that.

Definition check_post Q (z:Args.ZType) st’ :=
match st’ with
| CError = False
| CReturn st = Q z st = true
end.

There is another way to define check_post, which is possibly more intuitive.

Definition check_post’ Q (z:Args.ZType) st :=
Jst”, st’ = CReturn st” A Qz st” = true.

We give a short proof that these two definitions are indeed identical.

3.3. THE HOARE RULES 23

Lemma check_post_identical : V Q z st/,
check_post Q z st’ <+ check_post’ Q z st'.

A semantic Hoare triple {P}c{Q} consists of a precondition, a command and a postcon-
dition. It holds if whenever the precondition holds in the initial state, and the command
is evaluated in this initial state, the resulting state is not an error and it has to satisfy the
postcondition.

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=
V st st/,
c /st~ st
— (V z:Args.ZType, P z st = true
— check_post Qz st').

The z is an addition to the traditional Hoare triple and models auxiliary variables, whose
treatment needs to be made explicit in the presence of recursive procedures. Our imple-
mentation of auxiliary variables resembles the one presented by Nipkow [Nip02b], who
follows the solution of Morris [Mor] and Kleymann [Kle99].

A very important property of our semantic Hoare triples is that, if the precondition is uni-
versally valid and there is any postcondition Q that makes the triple hold, then the com-
mand c does not evaluate to a CError in any state. The property follows immediately from
the definition of semantic Hoare triples.

Definition valid_formula f:=V (z:Args.ZType) (st:Env), f z st = true.

Lemma hoare_triple_pre_valid_no_error: VcP Q,
valid_formula P —
{P}c{Q} — no_errorc.

In order to avoid exposing the reader too much to the shallow embedding we define valid.
This represents the place where usually the SMT-Solver would be called.

Definition valid (H:Prop) :=H.

Corresponding to the Hoare triples above, there is a definition for the call-depth-indexed
semantics. We use the suffix _n to indicate functions that use the call-depth-indexed seman-
tics. Since the Hoare rule for call can only be proven using the call-depth-indexed seman-
tics, we use that to prove our Hoare triples sound.

We use the syntax =, {P}c{Q} to describe a Hoare triple where the maximal depth of the
call stack is n.

Definition hoare_triple_n n (P:Assertion) (c:com) (Q:Assertion) : Prop :=
Y st st/,
c/st—n~st
— (V z:Args.ZType, P z st = true
— check_post Qz st').

3.3. THE HOARE RULES 24

A context is a list of commands and pre- and postconditions for them. It is in a sense a list
of Hoare triples.

Definition context := list (Assertion x com x Assertion).
The function sem_context checks if each of the Hoare triples in a context is correct.

Fixpoint sem_contextct { structct}:=
match ctwith
| nil = True
| (P,c,Q)::cl= {P}c{Q} A sem_contextcl
end.

Fixpoint sem_context_nnct{structct}:=
match ctwith
| nil = True
| (P,c,Q)cl=F,{P}c{Q} Asem_context_ nncl
end.

An extended Hoare triple has, in addition to the Hoare triple from above, a context. The
Hoare triples in that context are assumed to hold. These extended Hoare triples are used
to prove the correctness of non-mutually recursive procedures.

We use the syntax C =, {P}c{Q} to describe such a Hoare triple where C is the context.

Definition ext_hoare_triple CPcQ:=
sem_contextC — {P}c{Q}.

Definition ext_hoare_tripleennCPcQ:=
sem_context nnC— =,{P}c{Q}.

Last but not least, the Hoare judgement states that a context C2 holds if a context C1 holds.
The Hoare judgement is used to to prove the correctness of a number of mutually recursive
procedures.

We use the syntax C1 =, C2 to describe a Hoare judgement where C1 is the list of known
Hoare triples and C2 the Hoare triples we want to prove.

Definition ext_hoare_judgement C1C2 :=
sem_context C1 — sem_context C2.

Definition ext_hoare_judgement_n (n:nat) C1C2:=
sem_context_n n C1 — sem_context_n n C2.

3.3.2. Lemmas for deriving semantic Hoare triples

In this chapter we prove lemmas that allow us to obtain semantic Hoare triples from other
semantic Hoare triples for our commands.

3.3. THE HOARE RULES 25

Skip command

As the skip command does not change the state, any assertion that is true before skip also
holds after the execution of the command.

Theorem hoare_skip_n:VCPn,
CEn{P}skip{P}.

Assignment command

The function assn_sub sets a variable in the state to the result of evaluating a certain ex-
pression. The case that this expression evaluates to an Error can be ignored because in
that case the assignment command would diverge anyway.

Instead of a real substitution of the variable in the assertion P, assn_sub just replaces the
variable in the state with the constant value before passing the state to P.

Definition assn_sub P x a: Assertion :=
fun (z:Args.ZType) (st : Env) = P z (env_update st x (eeval_return st a)).

The Hoare rule for assignments intuitively corresponds to {P{x/a}}x := a{P}. The precon-
dition is just the postcondition where the variable that is assigned to is replaced with the
constant value of that expression.

Theorem hoare_asgn_n:VCPxan,
CEn{assnsubPxa} (x:=a){P}.

Sequence command

The sequence rule states that, if two individual commands c1 and c2, where the postcondi-
tion of c1 is the precondition of c2, are put into a sequence c1;c2, that sequence is again a
valid Hoare triple.

{P}c1{a} {Q}c2{R}
{P}c1;c2{Q}
Theorem hoare_seq_.n: VCPQRclc2n,
CEn{Q}c2{R}

—CEn{P}ci{Q}
—CEn{P}c1;c2{R}.

3.3. THE HOARE RULES 26

If command

To formalise the Hoare rule for conditionals we need to state in the precondition that a
certain variable is true. We use bassn for that. The bassn function creates an assertion that
checks if a certain variable in the state is true. We use the fact here that the guard of a
conditional is always a variable.

Definition bassni: Assertion :=
fun z st = syn_beq_val (st i) v_tt.

We can now introduce the Hoare rule for conditionals. It states that P is a precondition and
Q is a postcondition, if P A b is a pre- and Q a postcondition for the then-part c1 and P A
— b is a pre- and Q a postcondition for the else-part c2. The variable b is the guard of the
conditional.

{PAb}c1{a} {PA-b}c2{qQ}
{P}if b then c1 else c2{Q}

Theoremhoare_if n: VCPQbclc2n,
C = n { fun (z:Args.ZType) st = (P zst) A (bassnbzst) }c1{Q}—
C = n { fun (z:Args.ZType) st = (Pzst) A (— (bassnbzst))}c2{Q} —
CEn{P}ifbthenclelsec2{Q}.

While command

A while loop evaluates the guard before every loop iteration. So we could not simply make
the guard a variable as for the conditional. Because an evaluation can return an Error, we
define eeval_bool that returns false in case of an error and otherwise compares the resulting
value to v_tt.

Definition eeval_boolste:=
match eeval stewith
| Return v = syn_beq_val v v_tt
| Error = false
end.

The Hoare rule for the while loop requires that the loop body has P as an invariant, that
the precondition for the loop body is P and that the guard holds. The postcondition for the
while rule states that b does not hold.
{PAb}c{Q}
{P}while b inv P do c end{Q A —b}

Theorem hoare_while_.n: VCPbczn,
CEn{funzst=PzstAeevalboolstb}c{P}—

Ckn{P}

(while b inv (fun st = P z st) do c end)

3.3. THE HOARE RULES 27

{funzst=PzstA - (eeval_boolstb)}.

Assert Command

The Hoare rule for assertions requires as a precondition that the assertion holds.
{Q A b}assertb{Q}

Theorem hoare_assert_n : V C (Q:Assertion) (b:Imp.Assertion) n,
CEn{funzst=DbstAQzst}assertb{Q}.

Pick command

The Hoare rule for pick works similar to the assignment rule, just that it requires that the
postcondition holds when x is assigned any element of the collection.

{Wv € xc, P{v/x} }x := pick xc{P}

Theorem hoare_pick_n: VCPxcxn,
CEn{funzst=
forall_bool (fun v = implb (v_.mem v (st xc)) (assn_sub P x (EValue v) z st)) }
x := pick xc

{P}.

Backup command

The backup x in c command evaluates the Hoare triple for c using the same state for the pre-
and postcondition, except for variable x which is updated. The tricky thing is to “transfer”
the state from the pre- to the postcondition. We do that by quantifying over a new state st’
that we require to be equal to the state in the precondition.

This is similar to the auxiliary variable z we define for semantic Hoare triples in general in
Section 3.3.1, but we cannot use z because the type of z is opaque.

Vst', {fun st = P st A st’ = st}c{fun st = Q{st x/x} st'}
{P}backup x in c{Q}

Theorem hoare_backup_n: VCPQxchn,
(Vst,CEn{funzst=PzstAbeqg_envst st}
c
{funzst= Qz (env_update st x (stx)) })
—CkEn{P}backupxinc{Q}.

3.3. THE HOARE RULES 28

The consequence rule

Before we go on with the Hoare rule for call we introduce the consequence rule. The con-
sequence rule describes, in what way the pre- and postcondition can be changed for a given
Hoare triple. This will become clearer with the derived rules below.

{P'}c{Q'} Vstst',(Vz,P zst =true — Q' zst') — (Vz,Pzst = true — Qzst')

{P}c{Q}
Theorem hoare_consequence_n: V C (PP’ Q Q' : Assertion) cn,
Cha{P}c{Q}—
(Vstst/,

(V (z:Args.ZType), P’ z st = true — check_post Q' z st') —
(V (z:Args.ZType), P z st = true — check_post Q z st')) —
CEn{P}c{Q}.

The hoare_consequence_pre corollary proves that a precondition P’ can be replaced by a
stronger precondition P. Stronger means that precondition P implies P’ for all states.

{P'}c{Q} Vstz,(Pzst— P zst)
{Pic{Q}

Corollary hoare_consequence_pre_n: YV C (P P’ Q: Assertion) ¢ n,

CEn{P}c{Q}—~

P—P)—
CEn{P}c{Q}.
Conversely, the postcondition can be replaced by a weaker postcondition.
{P}c{Q’} Vstz,(Q' zst — Qzst)
{P}c{Q}
Corollary hoare_consequence_post_n: YV C (P QQ’ : Assertion) cn,
Cen{P}c{Q}—
Q@ —aq—
CEa{P}c{Q).

3.3.3. Procedure calls

We first give a Hoare rule for simple, possibly recursive procedures as long as they are not
mutually recursive. The context C contains the other procedures that can be called. The
context rule proves that all Hoare triples in the context are correct, which is by definition
of the extended Hoare triple.

(P,c,Q) eC
7n,C o {PIc{Q)

3.3. THE HOARE RULES 29

Theorem hoare_context_.n: VCPcQn,
In(P,c,Q)C—
Ckn{P}c{Q}
To justify a call to the procedure x we first assume that the recursive procedure call, if there

is any, satisfies the Hoare triple {P}call x{Q}. We then require that the body of x satisfies
that Hoare triple under the assumption that the recursive call satisfies the Hoare triple.

vn' (P, call x,Q) :: C = {P}procs x{Q}
Vn,C |=n {P}call x{Q}

To prove the Hoare rule for procedures, we need a number of lemmas. A complete list can
be found in Appendix B.2.3.

Theorem hoare_call_simple_n: VCP xQ,
(Vn',(P,callx,Q):: C= v {P}Args.procsx{Q}) —
(Vn,CEn{P}callx{Q}).

Mutually recursive procedure calls

Several mutually recursive procedures are justified using a Hoare judgement. The judge-
ment reasons over two contexts, C1 and C2. The Hoare triples in C1 are assumed to hold,
whereas we want to prove the Hoare triples in C2.

To justify that a judgement C2 holds under C1, two preconditions are required: Firstly, C2
only contains call x statements. Secondly, each Hoare triple for a procedure x in C2 is justi-
fied under the combined context of C1 and C2. This means that, like for the normal recursive
procedures, we assume for recursive calls that the Hoare triple actually holds.

vn' P Qx, {P}call x{Q} € C2 — C1UC2 k=, {P}procs x{Q}
Vn,C1 =, C2

Theorem hoare_call_n: V C1 C2,
(VPcQ,In(PcQ)C2 —3x c=callx) —
(Vn' (P Q: Assertion) x, In (P,CALL x,Q) C2 — C1 ++ C2 |= v { P } Args.procsx{Q}) —
(Vn,Cl1E=,C2).

3.3.4. Syntactic Hoare triples

As a final step we define syntactic Hoare triples and syntactic Hoare judgements. The syn-
tactic rules are pieces of inductively defined syntax, which we prove to be sound with re-
spect to the semantic triples. Because of the inductive definition, the rules are the only
way to prove syntactic Hoare triples. Whereas semantic ones can be proven both, using
the lemmas and directly with respect to the operational semantics. This distinction would
play a very important role if one wanted to prove completeness [Nip02b]. The syntactic

3.3. THE HOARE RULES 30

Hoare triples are also the link between the call-depth-indexed semantic variant of the Hoare
triples and the standard semantic Hoare triples. The rules are the same as for the semantic
triples. We denote syntactic Hoare triples with C - {P}c{Q}.

Inductive syn_ext_triple : context — Assertion — com — Assertion — Prop :=
| SSkip: VCP,CH{P}CSkip{P}
| SAsgn:VCPVa,Ck{assnsubPVa}V:=a{P}

where "CH{P}c{Q}":=(syn_ext_triple CPcQ)
with syn_judgement : context — context — Prop :=

where "C1F C2" := (syn_judgement C1 C2).

We prove that, if a syntactic triple is valid, then the call-depth-indexed semantic triple is
also valid.

Lemma hoare_soundness_n: VCPcQ,
CH{P}c{Q}—
VnCE,{P}c{Q}

This theorem states that the validity of the syntactic triples implies the validity of the Hoare
rules that do not take the call-depth into account.

Theorem hoare_soundness: VCPcQ,
CH{P}c{Q}—
CE={P}c{Q}.

Syntactic judgements are related to semantic judgements in the same way as the Hoare
triples above.

Lemma hoare_jsoundness_n: V C1 C2,
Ci-C2—
Vn,ClE,C2

Theorem hoare_jsoundness : V C1 C2,
ClFC2—Cl[C2.

We have only proven the soundness of the Hoare rules above, however, we expect them to
also be complete. Such a proof could probably follow the general proof structure of Nip-
kow’s proof [Nip02b], but it was not necessary for the current work where we only prove
the soundness of the transformation to Boogie.

3.4. INVERTING HOARE RULES 31

3.4. Inverting Hoare rules

The Hoare rules above show how a valid Hoare triple for an expression can be derived from
valid Hoare triples of the subexpressions. We now want to invert the Hoare rules and derive
valid Hoare triples for the subexpressions from a valid Hoare triple of an expression.

3.4.1. Weakest precondition

To do that we first define a weakest precondition function and prove certain facts about
it. The weakest precondition function WeakestPre takes a command and a postcondition
and generates the weakest possible precondition. It is based on the definition by Nipkow
[Nip02b]. This precondition is not in first-order logic because it uses a quantification over
states, which are themselves functions. Essentially the weakest precondition states that for
every state the postcondition has to hold after executing the command c.

Definition WeakestPre (c: com) (Q: Assertion) : Assertion :=
fun z st = forall_bool_prop (fun st’ = ¢ / st ~ st’ — check_post Q z st).

We prove that this weakest precondition is indeed a precondition as we would expect.
Lemma WeakestPre_pre : V c Q, { WeakestPrecQ}c{Q}.
This lemma proves that the weakest precondition is indeed the weakest precondition.

Lemma WeakestPre_weakest: VcP Q,
{P}c{Q}—
Vzst,Pzst=true —

WeakestPre c Q z st = true.

The counterpart of the weakest precondition is the strongest postcondition. Even though
it would be useful to have such a function, it is not possible to define one in our setting.
The reason is that commands can produce errors. In the case of an error, the check_post
function always evaluates to false, regardless of the postcondition in the Hoare triple. So
even with a constant-true postcondition it will be impossible to satisfy such a Hoare triple.
For example, the command assert (fun st = false) will always evaluate to CError and no
strongest postcondition can be generated.

3.4.2. Inversion functions

We can use the weakest precondition to invert Hoare rules. We show this in two cases.

The inversion of a sequence states that, if a Hoare triple involving a sequence is valid, it can
be split into two individual Hoare triples that are both valid. The post-/precondition in the
middle is generated by the weakest precondition function.

Lemma invert_seq: ¥V clc2 (P Q: Assertion),

3.5. VERIFICATION CONDITION GENERATION 32

{P}cl;c2{Q}—{P}cl{WeakestPrec2Q} A {WeakestPrec2Q}c2{Q}.

The inversion of a conditional gives us a Hoare triple for each branch. This is very simple
and does not require the weakest precondition function. The postcondition of each branch
is identical to the postcondition of the conditional. The precondition for the then-branch
includes additionally the fact that b is true, whereas for the else-branch — b has to be true.

Lemma invert_if: Vb cl c2 (P Q: Assertion),
{P}ifbthenclelsec2{Q}—
{funzst=PzstAbassnbzst}cl{Q}
A{funzst=PzstA - (bassnbzst)}c2{Q}.

3.5. Verification condition generation

The verification condition generator closely resembles the way Boogie works. Boogie starts
at the end of a function and calculates a precondition for each command. At the beginning
of the function Boogie tries to prove that the generated precondition is weaker than the
precondition annotated for the function.

Fixpoint VCgen (C:context) (c: com) (Q: Assertion) {struct c}: Assertion :=
match cwith
| skip = Q
|l:=al=
assn_sub Qlal
|cl;c2=
let P:=VCgenCc2Qin
VCgen Ccl P’
| if b then c1 else c2 =
let Pif:=VCgenCclQin
let Pelse:=VCgen Cc2Qin
fun z st = (bassn b z st A Pif zst) || (— (bassn b z st) A Pelse z st)
| while b inv P do c1 end =
fun _st = P st A forall_bool (fun z =
forall_bool (fun st’ = implb (P st’ A — (eeval_bool st’ b)) (Qz st)
A (implb (P st’ A eeval_bool st’ b) (VCgen C c1 (fun z = P) z st'))))
| assert b =
funzst=bstAQzst
|i:=picke= funzst=
forall_bool (fun v = implb (v_.mem v (st e)) (assn_sub Qi (EValue v) z st))
|calln = funzst=
exists_bool_prop (fun P = In (P,CALL n,Q) C A P z st=true)
| backup x in c =
fun z st = VCgen Cc (fun z’ st' = Q7' (env_update st x (st’ x))) z st
end.

3.5. VERIFICATION CONDITION GENERATION 33

Unlike the weakest precondition function, the verification condition generator is is not
guaranteed to return the weakest precondition. A special case is the while loop, which re-
quires an additional loop invariant P to be specified. Therefore the verification condition
generation is not complete, because a wrong loop invariant may be provided. The same is
true for procedures calls: the user needs to annotate proper triples for all procedures.

We prove that the precondition VCgen generates is indeed a precondition. In this theorem
we reason over the call-depth-indexed semantic Hoare triples, because our lemmas for the
Hoare rules are only specified using the call-depth-indexed semantics.

Theorem VCgen_sound_n:V CcQn,
CEn{VCgenCcQ}c{Q}.

To prove this theorem the Hoare lemmas from Section 3.3.1 were needed for each case. As
a corollary we prove that VCgen is also sound with respect to the normal semantic Hoare
triples, which follows directly from the above theorem.

Corollary VCgen_sound: vV CcQ,
CE{VCgenCcQ}c{Q}.

Lastly, we prove that, if the generated verification condition is valid, then the result of the
evaluation of c will be not be an error.

Corollary VCgen_no_error: VcQC,
sem_context C —
valid_formula (VCgenCc Q) —
no_error c.

Furthermore, we define a verification condition generation for procedures, which does two
things. For once it ensures that the context contains only call commands and it ensures that
all triples in the context have a stronger precondition than the one the verification condition
generator generates. This definition relies heavily on shallow embedding.

Definition VCgen_procs (C:context) : Prop :=
(VPcQ,In(PcQ)C— dx,c=callx) A
vYnVP,VQIn(PcallnQ)C—

P — (VCgen C (Args.procs n) Q).

Soundness of the VCgen_procs function is defined by stating that, if VCgen_procs generates
a valid formula for the context C, then C is indeed a valid context.

Lemma VCgen_procs_sound : V C,
valid (VCgen_procs C) —
sem_context C.

Having modelled the verification condition generator we have a complete model of Boogie.
We will use this model to show that our translation is indeed sound with respect to our
model of Boogie.

4. Translation

In this chapter we will outline the translation of code from DMinor to Boogie, give a number
of examples to illustrate it and prove the translation sound.

4.1. Translation of type-tests

Before introducing the actual translation we introduce the translation of type-tests. For
checking if a variable x is in a specific type we use the F function that is defined by Bierman
etal. [BGHL10] and formalised in Coq. The translateT function takes a type and the variable
that should be tested, and it returns an assertion (a function from Env to bool).

Definition translateT (t:MType) (x:string) : Imp.Assertion :=
funenv = Ft(envx)env.

F has the property that it always returns a boolean value, which is a problem because we
expect our translated code to fail if there is a typing error in a type. The only type that can
produce a tying error during evaluation is a refinement type containing a type-test. We
use the W function to check in advance whether the expressions in a type cause errors or
not. W returns false if the type test does not cause an error (see Section 2.2.4 for a formal
statement of this).

Definition translateT_err (t:MType) (x:string) : Imp.Assertion :=
fun env = — (Wt (envx) env).

The translateT_err function has the same signature as translateT. Our translation adds an
assertion before every type-test, verifying that translateT_err holds.

4.2. Translation

Below we introduce the actual translation function translate. The function takes, apart from
the expression we want to translate, an avoid list and the output variable. The avoid list
contains variable names that are not to be chosen when we generate fresh temporary vari-
ables. Names of binders are added to the avoid list that is passed to recursive calls of the
translate function. The output variable specifies the variable name where the result should
be written eventually. The translation generates code in such a way that after executing the
generated code, the specified variable indeed contains the result value.

34

4.2. TRANSLATION

35

Fixpoint translate avoid e outvar {struct e} :=
let avoid_o := outvar :: avoid in
let avoid := outvar :: fv_exp e ++ avoid in
backup outvar in
match ewith
| Var x = CAss outvar (EVar x)
| Value v = CAss outvar (EValue v)
|UnOpoe=
let €’ := projl_sig (fresh (avoid)) in
translate (e’::avoid) e €’;
(assert (translateT (fst (op_type_un 0)) €'));
match owith
| ONot = CAss outvar (ENot (EVar €'))
end
| BinOpoele2 =
let el := projl_sig (fresh (avoid)) in
let e2’ := projl_sig (fresh (el’::avoid)) in
translate (e1’::e2'::avoid) el el/;
translate (el’::e2"::avoid) e2 e2’;
(assert (translateT (fst3 (op_type_bi 0)) e1));
(assert (translateT (snd3 (op_type_bi 0)) e2'));
match owith
| OEq = CAss outvar (EEq (EVar el’) (EVar e2))
| OLt = CAss outvar (ELt (EVar e1’) (EVar e2))
| OGt = CAss outvar (EGt (EVar el’) (EVar e2))
| OAnd = CAss outvar (EAnd (EVar el’) (EVar e2'))
| OOr = CAss outvar (EOr (EVar el’) (EVar e2))
| OPlus = CAss outvar (EPlus (EVar el’) (EVar e2'))
| OMinus = CAss outvar (EMinus (EVar el") (EVar e2'))
| OTimes = CAss outvar (ETimes (EVar el’) (EVar e2'))
end
|Ifele2e3 =
let el’ := projl_sig (fresh (avoid)) in
translate (el’::avoid) el el’;
CAssert (translateT Logical e1);
if el’ then translate (e1’::avoid) e2 outvar
else translate (e1’::avoid) e3 outvar
| Let x el e2 = translate avoid el x; translate avoid e2 outvar
|Inet=
let e’ := projl_sig (fresh (avoid)) in
translate (e’::avoid) e €’;
(assert (translateT_err t e'));
outvar := Eln (translateT t e’)
| Entity el =

4.2. TRANSLATION 36

let ent’ := projl_sig(fresh (avoid)) in
let temp’ := projl_sig (fresh (ent’::avoid)) in
ent’ := EValue v_eempty;
(fix les_to_entity el :=
match elwith
| nil = skip
[(l,e):el =
(translate (ent’::temp'::fv_exp e ++ avoid_o) e temp/;
ent’ := EEntUpd | (EVar temp’) (EVar ent);
les_to_entity el’)
end) el;
outvar := EVar ent’
| Dote |l =
let e’ := projl_sig (fresh (avoid)) in
(translate (e’::avoid) e €’; assert (translateT (Entity | Any)) €');
CAss outvar (EDot (EVar €') 1)
|Add el e2 =
let el’ := projl_sig (fresh (avoid)) in
let e2’ := projl_sig (fresh (el’::avoid)) in
translate (el’::e2"::avoid) el el’; translate (el’::e2':avoid) e2 e2’;
(assert (translateT (Coll Any)) e2);
CAss outvar (ECollAdd (EVar e2') (EVar el))
|Accxelye2e3 =
let el’ := projl_sig (fresh (x:y::avoid)) in
translate (x::y::el'::avoid) el el’;
(assert (translateT (Coll Any)) el);
translate (x::y::el'::avoid) e2 y;
while (ENot (ECollEmpty (EVar e1’))) do
CPick x e1’;
el’ := ECollRem (EVar e1’) (EVar x);
translate (x::y::el'::avoid) e3 y

end;
outvar := (EVary)
| App fe=
translate (call_arg::avoid) e call_arg;
(call f);

outvar := EVar call_ret
end.

A number of points should be noted about the translate function. Firstly, there is a backup
at the beginning of every translation, which effectively results in a backup at every step
of the translated program. While this is not always necessary, it gives us the property that
after execution of a translated expression only the outvar variable changed.

All subexpressions of the translated expression are first translated and the values assigned

4.2. TRANSLATION 37

to temporary variables. These variables are used in the translation of the actual expression.
The temporary variables are chosen to be fresh, so they are neither free variables of the
expression we intend to translate nor the output variable where the result is written to.

The cases for variables and values are obvious. For the unary and binary operators we
first translate the arguments. Then we use an assert to verify that the arguments have the
required type. Similarly, for the conditional the guard el is required to be of type Logical.
Since all these type-assertions test for primitive types, such as Logical or Integer, we do not
need to use translateT_err.

We translate In by asserting that a type-test, if expression e is in type t, does not produce
a typing error. That assertion is generated using translateT_err. The function translateT is
then used in the EIn construct to check the type during runtime and return a Logical.

Entities are created using a loop in Coq, meaning that after the translation the entity cre-
ation is completely unrolled. We start by creating an empty entity and then adding fields
one by one.

Acc is translated using a while loop in Boogie. First the collection to accumulate over, el,
and the initial value e2 of the accumulator are translated and assigned to the variables x
and y respectively. The while loop continues as long as there are elements in the collection.
In each iteration one element is picked non-deterministically from the collection and then
the body of the accumulate, e3, is applied to that element.

For a procedure call the argument is translated and put into the call_arg variable as speci-
fied by the calling convention we defined in Section 3.2.4. The result is then found in call_ret
after procedure execution. We do not need an additional backup because the translation
already adds a backup for every translated expression. The translation of the procedure
definitions requires that we initialise the procedure list we abstracted as a module argu-
ment in Section 3.2.4.

Module Type TranslateArgs.

Parameter ZType: Type.

Parameter ZType_inhabited : ZType.
End TranslateArgs.
Module TranslateM (Args : TranslateArgs).

When instantiating the VCgen module we need to pass a set of procedures. This setis passed
all the way to the Imp module. We instantiate this by making every procedure a translation
of the DMinor function with the same name. Functions in DMinor are accessible using the
functions Cog-function and have an argument name specified while our calling convention
mandates the argument to be called call_arg. We therefore copy the argument to the spec-
ified variable name and then translate the function body while ensuring that the result is
put into call_ret.

Module HoareArgs.
Definition procss:=
let (arg,ex) :=functions s in

4.3. EXAMPLES 38

arg := EVar call_arg; translate nil ex call_ret.
Definition ZType := Args.ZType.
Definition ZType_inhabited := Args.ZType_inhabited.
End HoareArgs.
Module VCgenSpecificArgs := VCgenM HoareArgs.
End TranslateM.

4.3. Examples

To illustrate this translation process we use the same examples as in Section 2.3 and give
their translation. To increase readability we leave out the backup command at the begin-
ning of each translation step. We also manually give names to fresh variables, which would
otherwise be defined in terms of long avoid lists.

4.3.1. Accumulate example

Definition acc_sample coll :=
(Acc x (Value coll) y (Value empty_coll)
(If (BinOp OEq (Var x) (Value v_null))
(Vary)
(Add (Var x) (Vary))

Dk

This is the translation to Boogie of the above program.

Definition acc_translated coll :=
"fresh1" := EValue coll;
(assert translateT (Coll Any) "fresh1");
y := EValue empty_coll;
(while ENot (ECollEmpty (EVar "fresh1")) do
(x := pick "fresh1");
"fresh1" := ECollIRem (EVar "fresh1") (EVar x);
("fresh2" := EVar x;
"fresh3" := EValue v_null;
(assert translateT Any "fresh2");
(assert translateT Any "fresh3");
"fresh4" := EEq (EVar "fresh2") (EVar "fresh3"));
(assert translateT Logical "fresh4");
if "fresh4" theny := EVary
else "fresh5" := EVar x;
"fresh6" := EVary;
(assert translateT (Coll Any) "fresh6");

4.3. EXAMPLES 39

y := ECollAdd (EVar "fresh5") (EVar "fresh6")
end);
"outx" := EVary.

Typical for our translations is that every subexpression is first assigned to a fresh variable
beforeitis used, even if that means just copying a variable in the case that the subexpression
is Var x.

This example also shows all the assert commands our translation adds, which make sure
operands are of the right type. Before iterating over it, the assert checks if "fresh1" is indeed
acollection. Sometimes the translation also adds useless assertions, such as for "fresh2" and
"fresh3". They are useless because the equality operator requires no specific types for its
arguments. These type-tests will always succeed as every value is in Any.

4.3.2. Example of an execution error

Definitionin_sample :=
In (Value v_tt) (Refine v Any (BinOp OGt (Var v) (Value (v_int 5)))).

This is the translation to Boogie of the above program.

Definitionin_translated :=
"fresh” := EValue v_tt;
(assert translateT_err
(Refine v Any
(BinOp OGt (Var v) (Value (v_int 5)))) "fresh");
"outx" := Eln
(translateT
(Refine v Any (BinOp OGt (Var v) (Value (v_int 5))))
"fresh").

Our translation adds an assert before using EIn to ensure the expression in the refinement
type is well-typed. This is required for our translation to be sound because a type-test
using translateT will always return a value (see Section 4.1). The added assertion fails be-
cause translateT_err will return false for this input, precisely for the same reason as the
DMinor program above fails: Because the greater operator does not accept arguments of
type Logical.

We prove that in_translated indeed evaluates to an error.

Lemma in_translated_err : in_translated / env_empty ~~ CError.

4.4. SOUNDNESS PROOF 40

4.3.3. Incompleteness of the type system

We recall the incompleteness example and will demonstrate here that its translation be-
haves according to the operational semantics.

Definitionincom_sample :=
In (Value (v_int 5)) (Refine x Any (BinOp OGt (Var x) (Value (v_int 5)))).
Definitionincom_translated :=
"fresh" := EValue (v_int 5);
(assert translateT_err
(Refine x Any
(BinOp OGt (Var x) (Value (v_int 5)))) "fresh");
"outx" := Eln
(translateT
(Refine x Any (BinOp OGt (Var x) (Value (v_int 5))))
"fresh").

The translation is identical to the example above except for the fact that "fresh" is now 5.
We prove that the translated program satisfies a Hoare triple.

Lemma incom_translated_no_error :
{ fun z st = true } incom_translated { fun z st = translateT Logical "outx" st }.

4.4. Soundness proof

The soundness proof is the heart of this thesis; we relate the DMinor big-step semantics to
the Boogie big-step semantics.

We actually prove two things: Firstly, if the evaluation of the DMinor program raises an er-
ror, our translated program will also evaluate to an error in Boogie. This is done by adding
enough assertions during the translation so that Boogie will fail for every incorrect pro-
gram. Secondly, we prove that, if the evaluation of the DMinor program produces a value
v, then the translation of this program will store v in the output variable when executed.
These two things have to be proved together by mutual induction.

We have three additional preconditions: The expression we want to translate must not con-
tain impure refinements, none of the functions contains impure refinements and the only
free variable a function may have is the argument. An impure refinement is where an im-
pure expression (see Section 2.2.2) is used in a refinement type.

We use subst_state to make the original DMinor expression closed before evaluating it. This
is explained in more detail in Section 4.4.2.

Theorem translation_sound : V ex r outx avoid st,
(V s arg exp, (arg,exp) = functions s —

4.4. SOUNDNESS PROOF 41

contains_impure_refinements exp = false) —

(V s arg exp, (arg,exp) = functions s —
fv_exp exp = nil V fv_exp exp = (arg::nil)) —

Eval (subst_state ex st) r —

contains_impure_refinements (subst_state ex st) = false —

(r = Error — (translate avoid ex outx) / st ~» CError)

A
(Vv, r=(Returnv) —
Jst/, (translate avoid ex outx) / st ~ CReturn st’ A st’ outx = v).

4.4.1. Intuition of the proof

We prove this theorem by induction on the big-step semantics, which gives us 42 cases.
In each case we have to prove that the translated code evaluates to the same result as the
big-step semantics in DMinor (see Appendix A). On the Boogie side we use the big-step
semantics we defined in Section 3.2.5.

The first step in the proof is always to remove the backup command that is added by ev-
ery translation. For this we use two lemmas, one for the error case and one for the case
a resulting state is returned. In the case of a resulting state only the output variable outx
changed after executing the backup command.

Lemma backup_err: V c st outx,
(backup outx in c) / st ~» CError <
¢ / st ~ CError.

Lemma backup_ret : V ¢ st st’ outx v,
c / st ~ CReturn st' —
st outx =v —
(backup outx in c) / st ~> CReturn (env_update st outx v).

Then, depending on the case, we have to either prove that the evaluation succeeds with a
CReturn (v), where v must be the same value as DMinor returns, or that a CError is re-
turned.

The value case

In this case, a constant is returned. In the DMinor semantics it is formalised as follows:

| eval_value: Vv,
Eval (Value v) (Return v)

The generated proof obligation is:

Jst’: Env,

4.4. SOUNDNESS PROOF 42

(backup outx in outx := EValue v) / st ~ CReturn st’ A st’ outx =v

Without diving into technical details, it becomes clear that st’ outx will indeed contain v.

Failing operand

The above example showed a case where the evaluation succeeds and returns a value. Be-
fore we move on to more complicated cases, we show a case that evaluates to Error.

eval_un_op_1:Veop,
Eval e Error —
Eval (UnOp op e) Error

This case evaluates to Error because the operand e evaluates to Error, so it is a simple
bubbling up of errors. This is the proof obligation Coq gives us, where the backup is already
removed:

(translate avoid’ e’ a;
(assert translateT (fst (op_type_un u)) a);
matchuwith
| ONot = outx := ENot (EVar a)
end) / st ~ CError

This is again easy to prove, because the induction hypothesis gives us the fact that the trans-
lation of e’ evaluates to a CError: translate avoid’ €’ a / st ~ CError

A number of cases can be proven simply by the induction hypothesis. However, some cases
were very complicated to prove. The two most difficult cases were entity creation and ac-
cumulation.

Entity creation

Entity creation consists of two cases. In the first case, one subexpression from the expression-
list evaluates to an Error, which causes the whole expression to evaluate to an Error.

| eval_entity_1: Vlesl les2 lj ej,
(V1e,In(l,e) les1 — v, Eval e (Return v)) —
Eval ej Error —
Eval (Entity (les1 ++ (lj,€j) :: les2)) Error

The intuition is that les1 ++ (lj,ej) :: les2 is the list of expressions, where the expressions
in les1 evaluate successfully, the expression ej evaluates to an error and the expressions in
les2 could do anything, even diverge.

Our translation translates this case using a loop in Coq that adds elements to the entity one-
by-one. This case is proven by induction on les1, the expressions we know to succeed. The

4.4. SOUNDNESS PROOF 43

fact that the elements in lesl evaluate to some value is important for us to prove that the
evaluation of the translated expressions form les1 does not diverge.

The challenge was that we needed to strengthen the induction hypothesis before inducting
on the list les1. The strengthened statement has two additional hypotheses: The first is
that the entity, which is being constructed in the temporary variable a is of type Entity and
secondly, that except for the two temporary variables a and b the state stays the same for
each loop iteration. These are in a sense loop invariants for the Coq loop.

assert (Vst”,is_E (st” a) = true —
(Vx:string,a#x—b#x—stx=st"x) —
(fix les_to_entity (les : list (string x Exp)) : com :=
match leswith
| nil = skip
| pairle:: les’ =
translate (a :: b :: fv_exp e ++ outx :: avoid) e b;
a:= EEntUpd | (EVar b) (EVar a); les_to_entity les’
end) (les1’ ++ (li, ei) :: les2’) / st” ~ CError).

The case when the entity creation succeeds has the added difficulty that we need to prove
that the resulting value of both the original and the translated expression is the same after
evaluation. We use backwards induction on the list of expressions to prove this case. We
defined and proved our own backwards induction principle for this purpose.

Lemma list_ind_rev: V (A: Type) (P: list A— Prop),

P nil —
V@:A)(:listA),PI—=P(l++a:nil)) —
Vi:listA PL

A number of additional lemmas are needed for this case, e.g., lemmas that reason over re-
moving elements from an entity. They are listed in Appendix B.5.1.

Accumulation

The accumulation case faces similar difficulties as the entity case above. Here is the DMinor
evaluation rule:

| eval_accum_lets: Vxelye2e3rvlyvs,
Eval el (Returnvl) —
is_Cvl =true —
(Permutation vs (vb_to_vs (out_Cv1))) —
Eval (Lety e2 (let_seqy (List.map (fun v = subst_exp e3 vx) vs) (Vary))) r —
Eval (Accxelye2e3)r

4.4. SOUNDNESS PROOF 44

Similar to the entity case we also do an induction on the list of elements in the collec-
tion. Even though collections are encoded as lists in Coq, a collection has no inherent or-
der, which is expressed by the Permutation hypothesis above. We translate an accumulate
into a while loop that repeatedly picks elements from the collection. The main difficulty
was to relate the Let sequence to our while loop, which we did using two lemmas, one
for the while loop (Lemma unroll_loop) and one for the Let sequence generated by let_seq
(Lemma translate_let_seq_inv), which take an element from the collection and unroll the se-
quence or the loop by one. These lemmas and other additional lemmas can be found in
Appendix B.5.2.

4.4.2. Closedness of the expression in the proof

In our proof we used subst_state because Eval is only defined for closed expressions and
subst_state makes every expression closed. We can prove as a corollary that the above the-
orem also holds if we require ex to be closed instead of using subst_state. In the theorem
above subst_state was required in order to strengthen the induction hypothesis, because in
the induction case the expression could not always be guaranteed to be closed.

Corollary translation_closed_sound : V ex r outx avoid st,

fv_exp ex = nil —

(V s arg exp, (arg,exp) = functions s —
contains_impure_refinements exp = false) —

(V s arg exp, (arg,exp) = functions s —
fv_exp exp = nil V fv_exp exp = (arg::nil)) —

Evalexr —

contains_impure_refinements ex = false —

(r = Error — (translate avoid ex outx) / st ~» CError)

A
(Vv, r=(Returnv) —
Jst/, (translate avoid ex outx) / st ~ CReturn st’ A st’ outx = v).

4.4.3. Relation with Hoare logics

As a second corollary we prove that, if a Hoare triple with a valid precondition can be es-
tablished for the translated program, then the original DMinor program will not raise an
error when it is evaluated.

Corollary soundness_hoare_plus_translation : V avoid ex outx P Q,
fv_exp ex = nil —
(V s arg exp, (arg,exp) = functions s —
contains_impure_refinements exp = false) —
(V s arg exp, (arg,exp) = functions s —
fv_exp exp = nil V fv_exp exp = (arg::nil)) —

4.4. SOUNDNESS PROOF 45

contains_impure_refinements (ex) = false —
nil - { P } translate avoid ex outx { Q} —
valid_formula P —

- Eval ex Error.

This corollary has a very simple proof, as it follows directly from translation_closed_sound
and hoare_triple_pre_valid_no_error from Section 3.3.1.

4.4.4. Relation with verification condition generation

We prove that, if the verification condition VCgen generates for the translated code is valid,
then the original program will not evaluate to Error. This proof connects Boogie to DMinor,
because VCgen models the behaviour of Boogie.

Corollary soundness_vcgen_plus_translation : V avoid ex outx Q C,

fv_exp ex = nil —

(V s arg exp, (arg,exp) = functions s —
contains_impure_refinements exp = false) —

(V s arg exp, (arg,exp) = functions s —
fv_exp exp = nil V fv_exp exp = (arg::nil)) —

contains_impure_refinements (ex) = false —

valid (VCgen_procs C) —

valid_formula (VCgen C (translate avoid ex outx) Q) —

— Eval ex Error.

The proof is very simple by using VCgen_no_error from Section 3.5 together with
translation_closed_sound.

4.4.5. Relation to the type system

As we have shown in Section 4.3.3, the DMinor type system is incomplete with respect to
the operational semantics. From that fact follows that, if a translated expression is valid in
a Hoare triple with true as a precondition, it does not hold in general that the expression is
well-typed.

Lemma counterexample : = (V e env outx T avoid,
fv_exp e = nil —
envi-T—
= In outx (dom env) —
nil = { fun __= true } translate (app avoid (dom env)) e outx
{ fun _st = translateT T outx st } —
envie:T).

4.4. SOUNDNESS PROOF 46

The proof works by using incom_sample to construct a counterexample. We have proven
lemma incom_translated_no_error (see Section 4.3.3) that states that a valid Hoare triple
with true as the precondition and “translateT Logical "outx" st” as a postcondition exists. We
have also proven lemma incom_sample_type (see Section 2.3.3) that shows thatincom_sample
is not of type Logical.

If we wanted our translation to be sound with respect to the type system, we would have to
change the translation to add more assertions to match the incompleteness of the DMinor
type system, which would actually decrease precision and in practise also performance.

5. Implementation

Matching the theory we wrote an implementation, called DVerify, that transforms a DMinor
program into a Boogie program. DVerify is written in F# 2.0 [Mar10] and consists of more
than 1200 lines of code as well as a 700 line axiomatisation that defines the DMinor types
and functions in Boogie. The main purpose of it is to serve as a proof-of-concept and to
show that Boogie is indeed able to correctly verify the translation of a considerable number
of samples.

But before introducing our axiomatisation and implementation we introduce the tools that
match the theory given in Chapters 2 and 3.

5.1. DMinor type-checker

A prototype implementation for DMinor is written in F# and works using a bidirectional
type-checking algorithm [PT98]. Bidirectional means that it uses type-synthesis to gen-
erate a type for any expression and type-checking to check if an expression has a certain
type. These two algorithms are mutually recursive. Type-synthesis is similar to a strongest*
postcondition algorithm in a verification setting.

As outlined in Chapter 2, DMinor uses semantic subtyping and the type-checking function
calls Z3 to determine if the formula encoding a subtyping test is valid. Since Z3 knows noth-
ing about the types and functions DMinor uses, Bierman et al. created an axiomatisation of
those types and functions that is fed to Z3 along with the formula to be proven.

5.2. Boogie tool

The Boogie tool takes a Boogie program as input and outputs either an error message that
describes points in the program where certain postconditions or assertions may not hold
[LMSO05] or otherwise prints a message indicating that the program has been verified suc-
cessfully.

tis not guaranteed that the type returned by the type-synthesis is indeed the strongest. In fact, some of the
type-synthesis rules [BGHL10] seem to trade some “strongness” (i.e. theoretical completeness) for compo-
sitionality, efficiency and practical completeness.

47

5.3. SOME IMPLEMENTATION DETAILS 48

Boogie supports uninterpreted function symbols, which we did not model in our formali-
sation. For an uninterpreted function symbol only the signature is given and the function’s
input/output behaviour is specified using axioms. For that reason Boogie code is not exe-
cutable, however, it is not necessary to execute Boogie code because said code was usually
generated from executable code in the first place. In our formalisation we abstracted func-
tion symbols away by adding the functions we require as primitives to the language, see
Section 3.2.2.

5.3. Some implementation details

We will not go into great detail about DVerify here, but we will give a high-level overview.
We use the DMinor implementation as a library so that we do not have to reimplement
existing functionality. This is mainly the parser for DMinor files, the purity checking and a
weak form of type-synthesis.

The heart of our translation consists of a recursive function that goes over a DMinor expres-
sion and translates itinto Boogie code. This function is called once per DMinor function and
produces a Boogie procedure. Types in DMinor are translated into Boogie function symbols
returning a bool, using another recursive function in our implementation. For each trans-
lation of In we add an additional assert, just as in the theory (see Section 4.2).

Every time we translate a refinement type we use the purity checking function from DMinor
and if we encounter an impure expression in a refinement we raise an exception during the
translation. This means that in such cases, it is not Boogie that fails on the translated code,
as usual, but it is the actual translation routine that fails. That is necessary because there is
no way to check purity using Boogie.

The while loops produced by the translation of Acc are annotated with a type for the accu-
mulator, so we use that type annotation as an invariant for our while loop. In the future
we intend to infer such loop invariants automatically using the Boogie infrastructure for
this task. The DMinor language as implemented by the type-checker allows for one more
construct to define a loop, called Bind. In theory Bind can be encoded using Acc, but in
the DMinor implementation it is considered a primitive in the interest of efficiency and to
reduce the type annotation burden. Since Bind does not carry a type annotation, we have
to find one during translation. For that we use type-synthesis from DMinor. However, we
modified the original type-synthesis algorithm as used by DMinor so that it no longer calls
the type-checking algorithm, and therefore never fails to synthesize a type for an expres-
sion. This also means that our solution never calls Z3 during type-synthesis, because Z3 is
only needed to check subtyping.

5.4. AXIOMATISATION 49

5.4. Axiomatisation

A major part of the implementation is the axiomatisation of DMinor values and functions
in Boogie. This becomes necessary because Boogie as such understands only two sorts,
bool and int, whereas DMinor has a number of primitive and composite values as listed
in Section 2.1.1. In the Coq formalisation we circumvented this problem by directly using
values, thereby assuming DMinor values are native to Boogie as outlined in Section 3.2.2.
Our axiomatisation is similar to the axiomatisation the DMinor type-checker feeds to Z3.
The complete axiomatisation is given in Appendix C.

As an example we describe in detail the axiomatisation of the General sort.

5.4.1. The General sort

General is the sort of primitive values (i.e. values having a primitive DMinor type), listed in
Section 2.1.1.

In the axiomatisation General is a sort. Since Boogie does not allow algebraic datatypes
to be defined directly, like for instance in F#, we have to use function symbols that take a
specific sort and output General. These function symbols do not have implementations
because Boogie is not a language that is run, but rather these function symbols are passed
directly to Z3.

type String;
type General;

// Constructos

function G_Integer(int) returns (General);
function G_Text(String) returns (General);
function G_Logical(bool) returns (General);
const G_Null : General;

The sort String needs some explaining: Boogie does not have any primitive representation
for strings, so we chose the simplest possible representation for strings. Every string is a
unique constant of sort String, two identical strings are translated to the same constant,
simply by making the string the name of the constant. This is possible because DMinor
has no operation on strings other than comparison. Here is an example of those string
constants:

const unique str_Hallo : String; // the string "Hallo"
const unique str_foo : String; // the string "foo"

As anext step we define a number of tags, which are used to identify what content a variable
of sort General has. There is a function symbol get_GTag that returns a tag for a specific
General variable. A tag is a unique constant of sort GTag, similar to an enumeration in

5.4. AXIOMATISATION 50

imperative programming languages. There is no implementation for this function symbol,
but a number of axioms that define the function symbol’s behaviour: Depending on the
function symbol used to create a certain variable of type General the corresponding tag
is returned. The tester function symbols return true or false, depending on whether the
variable was created with the corresponding function symbol.

// Tags

type GTag;

const unique GTag_Integer : GTag;
const unique GTag_Text : GTag;
const unique GTag_lLogical : GTag;
const unique GTag_Null : GTag;

function get _GTag(General) returns (GTag);

axiom (forall i : int :: { get_GTag(G_Integer(i)) }
get _GTag(G_Integer(i)) == GTag_Integer);

axiom (forall s : String :: { get_GTag(G_Text(s))}
get GTag(G_Text(s)) == GTag_Text);

axiom (forall b : bool :: { get _GTag(G_Logical(b)) }
get_GTag(G_Logical(b)) == GTag_Logical);

axiom (get_GTag(G_Null) == GTag_Null);

// Testers

function is_Integer(g : General) returns (bool) { get GTag(g)
GTag_Integer}

function is_Text(g : General) returns (bool) { get GTag(g) ==
GTag_Text}

function is_Logical(g : General) returns (bool) { get GTag(g)
GTag_Logical}

function is_Null(g : General) returns (bool) { get GTag(g) ==
GTag_Null}

The last set of function symbols concerning General are the out-function symbols. They
return the primitive that a General variable contains (int, bool, or String).

// Accessors
function of_G_Integer(General) returns (int);

axiom (forall i : int :: of_G_Integer(G_Integer(i)) == 1i);
function of_G_Text(General) returns (String);
axiom (forall s : String :: of_G_Text(G_Text(s)) == s);

function of_G_Logical(General) returns(bool);
axiom (forall b : bool :: of_G_Logical(G_Logical(b)) == b);

The return value of each of these function symbols is only defined if the General passed to
it contains a value of that type. Since function symbols in first-order logic are total, in other
cases anything can be returned. So if we call for example of_G_Logical(G_Integer(5))
either true or false is returned, but there is no assumption which one. This is a major
difference to Coq where a default value needs to be explicitly given in that case.

5.4. AXIOMATISATION 51

5.4.2. The Value sort

The Value sort is built in the same way as General. To keep this section concise we will
only display the function symbols that construct a Value.

type Value;
type VList;
type VOption;

// Constructors (values)

function G(General) returns (Value);
function E([String]VOption) returns (Value);
function C([Value]int) returns (Value);
function L(VList) returns (Value);

// Lists
const Nil : VList;
function Cons(Value,VList) returns (VList);

// Options used for enties
const NoValue : VOption;
function SomeValue(Value) returns (VOption);

General requires no more explanation. Entities are maps from String to VOption. In
Boogie a map means a finite support function that in this case gives a VOption for every
possible String. The empty Entity is a map where all strings are mapped to NoValue.
During entity construction some strings are then updated so that they map to SomeValue.
Collections (multi-sets) are also represented using maps, this time from Value to int. So
for every possible Value the map stores the number of occurrences in the multi-set. Ini-
tially this is 0 for all values and is then updated to any positive number.

Lists are not primitive in the theory (see Section 2.1.1), but are present in the implemen-
tation of DMinor. Even though they can be encoded [BGHL10], they are implemented as a
primitive for performance reasons. In Boogie we represent them as using Nil and Cons
constructors as usual for lists.

5.4.3. Axiomatisation of DMinor operations

DMinor offers a number of expressions that perform operations on values as outlined in
Section 2.1.2. These built-in expressions simply become function symbols in Boogie. Since
Boogie distinguishes between function symbols and procedures we define both a function
symbol and a procedure for those DMinor expressions. The reason for this dual axiomati-
sation is that procedures are used when these expressions appear inside DMinor functions,
whereas the function symbols are used when expressions are used inside refinement types.

5.4. AXIOMATISATION 52

We translate DMinor types as function symbols, and those function symbols cannot call pro-
cedures. For that reason we need to have an axiomatisation of DMinor expressions as both,
function symbols and procedures.

Procedures

In Boogie procedures consist of a body and a set of pre- and postconditions. Boogie checks
once if the procedure body conforms to these pre- and postconditions and then the pro-
cedure becomes opaque. That means that when the procedure is called somewhere, the
body of the procedure is ignored. Boogie merely checks if the procedure’s preconditions
are satisfied and then assumes the postconditions. So it is essential that the postconditions
are strong enough to reason about the procedure’s functionality.

Function symbols

Function symbols are interpreted (in first-order logic models) by total mathematical func-
tions and are specified with number of axioms. A function symbol can be underspecified;
in that case it is unknown what value a function will return for certain inputs. The other
way to define a function symbol’s behaviour in Boogie is by giving a body to the function,
but that is only syntactic sugar for an axiom. Functions can also be called in asserts, pre-
and postconditions, which is not true for procedures.

Example: addition

As a very simple demonstration of the relation of functions and procedures, we show here
the addition operator that takes two integers and adds them.

function O_Sum(vl:Value,v2:Value) returns (v:Value);
axiom (forall v1 : Value, v2 : Value :: { O0_Sum(vi,v2) }
Integer(vl) && Integer(v2) ==>
O_Sum(vl,v2) ==
v_Int(of_G_Integer(of_V_General(vl))
+ of_G_Integer(of_V_General(v2))));

procedure pO_Sum(vl:Value,v2:Value) returns (v:Value)
requires Integer(vl) && Integer(v2);
ensures Integer(v) &% v == 0_Sum(vl,v2);
{
v := v_Int(of_G_Integer(of_V_General(vl))
+ of_G_Integer(of_V_General(v2)));

5.5. QUANTITATIVE COMPARISON OF DMINOR AND DVERIFY 53

The body of the function and that of the procedure are very similar and are mainly unbox-
ing the integers, adding them and boxing the result. The procedure makes sure through
the preconditions that the arguments are indeed integers. In the postcondition the pro-
cedure relates to the function symbol to enable a caller to reason about the procedure’s
result. Because of the implication, the function symbol is defined only for the case that the
operands are integers. For the case that they are not, no assumption can be made what
value is returned, the value must not even be an integer at all. We can express that fact with
this assertion, which indeed fails:

assert (Integer(0_Sum(v_true, v_false)));

This is different from our theory, where we model operators using error-tracking so that,
in case the arguments are not integers an error is returned. So in theory O_Sum should be
defined to return a Result instead of a Value.

| EPlus a b = LBind (eeval st a) (fun x1 =
(LBind (eeval st b) (fun x2 =
if In_Integer x1 A In_Integer x2 then Return (O_Sum x1 x2) else Error)))

When we began developing early prototypes of DVerify we axiomatised operators and other
functions as fully specified function symbols; in case of addition a function symbol that
always returns an integer. This would render our translation unsound, because if an integer
was added to a logical in a type-test, said type-test would be verified successfully, even
though according to the operational semantics it would return an error when executed.

[t would have been possible to stay faithful to the theory in our axiomatisation and explicitly
track errors, but it would have required widespread changes and we took the pragmatic
decision to go with the easier solution of underspecifying functions.

The intuition is that by underspecifying them, these function symbols work in a similar way
to their theoretical counterparts that bubble up errors: If one of the operands cannot be
proven to have a specific type, then the result will also not have any specific type. We know
that function symbols are only used in type-tests and refinement types; in all other cases
procedures are used. In those two cases the result of the expression must be either true or
false, which we check in our translated code. If deep inside the refinement type there is a
logical fed to an addition operator, then for the whole expression it cannot be proven that
the result is true or false and therefore the program is not verified by Boogie.

While we have some intuition on this solution, there is no formal proof that would guaran-
tee this is sound in all cases. However, all examples we tried so far worked fine with this
solution.

5.5. Quantitative comparison of DMinor and DVerify

We will give an overview here how our implementation compares to the DMinor type-
checker in terms of precision, efficiency and the predictability of verification time. We test

5.5. QUANTITATIVE COMPARISON OF DMINOR AND DVERIFY 54

against DMinor 0.1.1 from September 2010.

5.5.1. Test suite and precision

Microsoft Research gave us access to their DMinor test suite that contains 109 sample DMi-
nor programs, plus some additional tests for the parser and interpreter. We do not con-
sider parser and interpreter tests because we use the parser from DMinor and the inter-
preter is not necessary for static program verification. Out of these 109 tests 33 should
fail type-checking because they are ill-typed DMinor programs and 76 should successfully
type-check. Out of these 76 DMinor cannot verify 10 tests that are all examples of incom-
pleteness of the type-checker.

Type-checking success Type-checking failure Total

Original test suite 76 33 109
DMinor passes 66 33 99
DVerify passes 62 31 93

We wrote a test program in the form of a Visual Studio Test Project that automatically runs
the test suite through DMinor and then through DVerify.

From 66 cases on which DMinor succeeds, DVerify manages to verify 62 as correct. Out of
the 33 that fail in DMinor, DVerify fails on 31. The other two are correct operationally, but
have typing errors. That means overall that DVerify succeeds on 94% of the cases DMinor
succeeds on and is able to verify two correct programs DMinor cannot verify.

For the 4 cases Boogie cannot verify the most common problem is that a too complicated
loop invariant is created by the type-synthesis. This invariant is not necessarily wrong, but
together with our axiomatisation Z3 fails to prove it.

5.5.2. Verification times

We modified the test program to also take time measurements. For each component two
measurements were taken: Firstly, we measured the overall wall-clock time that is needed
by the two tools, which includes the time the operating system requires to start the process.
Secondly, we measured the time excluding initialisation and parsing, which we call “internal
time”. Since we are dealing with a large number of small files and both tools are managed
(.NET) assemblies, initialisation is a major factor. To get the internal time we added code to
each component that measures and outputs that time. This was possible because we had
access to the source code of all components.

We measure timings for those 66 examples that are successfully verified by both tools and
present the statistics below. The measurements were taken on a 2.1 GHz laptop with 4GB
of RAM running the Windows 7 x64 operating system.

5.5. QUANTITATIVE COMPARISON OF DMINOR AND DVERIFY 55

Overall time Internal time
Min Avg! Max SD®* Min Avg® Max SD?
DMinor 0,69s 1,13s 4,62s 0,50s 0,09s 0,50s 3,97s 0,49s
DVerify 1,56s 1,81s 297s 0,25s 0,30s 0,49s 1,35s 0,17s
Translation only 0,80s 0,97s 1,75s 0,13s 0,12s 0,26s 0,42s 0,08s
Boogie only 0,76s 0,85s 1,71s 0,16s 0,16s 0,23s 0,94s 0,11s

! Arithmetic mean
2 Standard deviation

DVerify takes 60% longer on average than DMinor. However, the times without parsing and
initialisation are the same on average. DVerify takes 60% longer, mostly because we have
twice the initialisation overhead, once for the translation and once for Boogie. Initialisation
and parsing take particularly long for Boogie. We also list the times DVerify spends trans-
lating separately from the time taken by Boogie. The standard deviation of our translation
and Boogie is much lower, which indicates a better predictability, meaning that irrespective
of the example the running time is almost the same.

Included in above results is a simple optimisation we did that sped Boogie up by 40%: In
the original setup the whole axiomatisation was passed along with the translated file to
Boogie. That meant that all the procedures in the axiomatisation had to be checked as well,
every time a translated file was processed by Boogie. We removed this additional work-
load by removing all procedure bodies from the axiomatisation once boogie verified them,
leaving only the signatures and the pre- and postconditions. Consistent usage of quantifier
patterns [LM09] improved performance by another 10%. We did not just add patterns to
the quantifiers in the library, but also to the quantifiers we generate during our translation,
e.g. for loop invariants.

Another way to speed both tools up would be by using the Native Image Generator (NGen)
that is part of the NET Framework [Wil05]. .NET assemblies are compiled by default to the
Common Intermediate Language (CIL) [ECMO06] and then compiled to native code during
runtime. This just-in-time compilation does not just have an impact on the startup time,
but also on the internal time because a procedure is only compiled once it is called for the
first time. While for long-running applications the additional time of the just-in-time com-
pilation may be negligible, in our case it has a very big impact because a new instance of
each program is started for every file we test. NGen performs an ahead-of-time compilation
and thereby reduces start-up and running time significantly. We only tested this for DMi-
nor and it resulted in a speed-up of 33%. This is not included in the above figures, which
are measured using the normal .NET assemblies.

Another way to speed up things slightly would be to start Boogie after the translation in the
same process. That would require one less process initialisation, which takes time because
the Common Language Runtime has to be loaded into a every managed process. We did not
experimentally try this solution.

5.5. QUANTITATIVE COMPARISON OF DMINOR AND DVERIFY 56

Scalability

We also tried to test scalability by plotting the verification time over the program size. It
seems that Boogie has a better scalability than DMinor, meaning that verification times of
Boogie are nearly constant and do not change much when the complexity of the program
increases. However, it is hard to draw definitive conclusions out of this experiment, since
all our test programs are very small, the largest program being 92 lines.

s DMinor s DVerify
4,5 4,5
4 L4 4
3,5 3,5
3 3
2,5 2,5
2 2
1,5 > 1,5
1 / 1 * _——

0,5 $ 0,5 W
0 T T T T 1

0 20 40 60 80 100 0 20 40 60 80 100
Lines Lines

The charts both show the time (in seconds) the verification takes per line of code and a
linear trendline. For DMinor the time per line grows faster than for Boogie.

5.5.3. Example where DVerify is more precise

We showed in Section 4.3.3 that the type system is incomplete with respect to the opera-
tional semantics. This carries over from the theory to the implementations and we demon-
strate here that for this example DVerify is more precise than DMinor. This is the example
in DMinor syntax:

a() : Logical
{

5 in Any where value > 5

}

DMinor rejects this program, because in the refinement type we use type Any and that can-
not be applied to the greater operator. DVerify, on the other hand, checks if this refinement
is correct with respect to the operational semantics, which it is, because the value in ques-
tion (5) which is indeed an Integer. So Boogie accepts the translated program below.

procedure a() returns (out: Value)
ensures Logical(out);

{
assert (0_GT(v_Int(5), v_Int(5)) == v_true ||

5.6. QUALITATIVE COMPARISON OF DMINOR AND DVERIFY 57

0_GT(v_Int(5), v_Int(5)) == v_false) &&
Any(v_Int(5));
out := v_Logical(O_GT(v_Int(5), v_Int(5)) == v_true &%&
Any(v_Int(5)));
}

If we change the above example slightly so that we pass a Logical to the greater operator,
both DMinor and Boogie will fail as expected.

b() : Logical
{

true in Any where value > 5

}

5.6. Qualitative comparison of DMinor and DVerify

During our work we realised that even though type-checking and verification are usually
considered different, in our setting, not only can we use both to achieve the same thing, but
they also, from a highly abstract point of view, have similarities in how they work.

DMinor “correct” or “incorrect”
typechecker (+ counterexample)
Check “valid” or
formula “invalid” + model

73 SMT Solver

DMinor
program

Check “valid” or
formula “invalid” + model

“correct” or
“incorrect”

)
| Translation Fg%% Boogie F*

DVerify

On the DMinor side the source code is directly fed to the DMinor type-checker, which then
invokes Z3 for every subtyping check (see Section 5.1). On the DVerify side the code is
first translated by our tool and then fed to Boogie, which generates one proof obligation for
every postcondition or assert inside a procedure. Leino et al. propose a technique called
verification condition splitting that would lead to a larger number of smaller proof obliga-
tions being discharged [LMSL08]. We tried enabling this feature in Boogie and it indeed
decreased the maximum verification time, but had no impact on the average time. For this
reason our implementation does not currently use verification condition splitting.

5.6. QUALITATIVE COMPARISON OF DMINOR AND DVERIFY 58

Area Our verification approach | Type-checking approach
(DVerify) (DMinor)

Verification cond. Weakest precondition Bidirectional type-checking
generation (type synthesis = strongest
postcondition)

Formulae discharged One per postcondition/ One per subtyping test
assertion (smaller, but more obligations)
(larger, but less obligations)

Backend Boogie + SMT-Solver (Z3) SMT-Solver (Z3)

Loop invariants In principle Boogie could For some constructs they are
infer some inferred
(even for accumulates) (but not for accumulates)

Error reporting Abstract trace Counterexample

Performance (internal) similar similar

Precision (practise) similar similar

Completeness (theory) [possibly better 1 SSENNORGRE S

Both DMinor and Boogie require an axiomatisation of the Value type and the build-in func-
tions. In DMinor this axiomatisation is written in SMT syntax [RT06b] and directly fed to
7.3 with the proof obligation. Our axiomatisation is in Boogie language and Boogie trans-
lates it to Simplify syntax [DNS05] and feeds it to Z3 along with the verification conditions
it generates.

Regarding error reporting DMinor gives us counterexamples which are more useful in prac-
tise than the abstract traces Boogie gives us. We will discuss error reporting and possibili-
ties to improve that in DVerify in Section 6.2.1.

Both use Z3 as an SMT solver, but DMinor calls Z3 repeatedly, whereas Boogie calls Z3 only
once, but with a proof obligation for each procedure. Overall performance is better in DMi-
nor by roughly 60%. However, when we excluded initialisation and parsing times both took
on average the same time. The smaller standard deviation indicates that DVerify is more
predictable. Regrading scalability results show that DVerify could be better, however, we
only only tested this on a number of very small examples.

Regarding precision our results are mixed. Better precision means that less correct pro-
grams are rejected. In theory, DVerify could be better because it is close to the operational
semantics, whereas type systems are inherently incomplete. However, we never proved
completeness for our Hoare logic and VCgen is inherently incomplete for loops, which re-
quire an invariant annotation. Comparing the implementations, the result depends on the
example, sometimes DMinor is more precise and sometimes DVerify. The fact that we tested

5.6. QUALITATIVE COMPARISON OF DMINOR AND DVERIFY 59

DVerify on a test suite that was written for DMinor biases the result as one could find more
examples that are verified by DVerify, but not by DMinor. Finally, one should keep in mind
that both are just meant to be prototypes.

6. Conclusion

6.1. Summary

This thesis investigated the relationship between a general-purpose verification tool and a
type-checker. We started by introducing a subset of Boogie and the DMinor language in a
theoretical context. We used Coq to formalise the subset of Boogie, a formalisation of DMi-
nor was already available. Next, we introduced our translation and proved it sound with
respect to the big-step semantics of the two languages. Lastly, we presented the prototype
implementation of the translation and how our tool chain works compared to DMinor.

On the theory side we showed that our translation is able to identify runtime errors in DMi-
nor programs statically. On the practical side we were not yet able to match the precision of
DMinor for all examples, but we presented one example where DVerify is more precise than
DMinor. Regarding efficiency we were able to match DMinor when not taking initialisation
into account.

Our formal development consists of 5000 lines of Coq and our proofs are done in full detail.
This is made on top of the DMinor formalisation consisting of 4000 lines [BGHL10], which
makes the total size of the formalisation approach 9000 lines of Coq. The soundness proof
alone consists of 1300 lines of Coq code and the Coq proof checker takes more than 2%
minutes to check the proof. Three custom Coq tactics were defined to simplify the proof.
A list of how these 5000 lines are split between the nine files of our formalisation can be
found in Appendix B.

The Coq formalisation and the DVerify source code are available under permissive licenses
[Tar].

6.2. Future work

6.2.1. Implementation

Due to our focus on the formalisation of the theory in Coq, the current implementation
should be considered only a proof-of-concept prototype. However, during the inception of
this thesis we had a number of ideas that could make DVerify a much more powerful tool
for verifying DMinor programs.

60

6.2. FUTURE WORK 61

Extensions to DMinor

The fact that we use a general verification tool for checking DMinor programs could allow
us to increase the expressivity of the DMinor language more easily.

The "M" language is still in development and a sensible addition would be to support state.
State means that there are mutable global variables, which can be read and written from
inside functions. Adding support for state would be easy in Boogie, because, as Boogie
is used mainly for imperative programming languages, it has built-in support for global
variables [CMTS09]. An interesting consequence of using Boogie is that it should be easy
to support strong updates (i.e. updates that change the type of variables), which is hard to
achieve with a type-checker.

Other extensions could target features of "M" that are not implemented in DMinor. "M"
supports for example modules, fully qualified names and breaking modules into several
files. This is only syntactic sugar, but "M" also supports default values for entity types. That
means that whenever no explicit value is assigned to a field the default value is returned.
One can dynamically cast an entity to an entity type with default values and thereby add
fields to the entity [Mic09].

One of the most ambitious additions would be concurrency. We do not know whether "M"
will ever explicitly support concurrency, but it would be a sensible addition as "M" is in-
tended to model databases. Currently "M" does not have a notion of state, so there is no
need to introduce locking mechanisms to coordinate access to shared memory. The VCC
uses Boogie to verify concurrent C programs [CMST09] [DMS™*09], so Boogie is well suited
to deal with concurrent programs. Having both state and concurrency available we could
properly model "M" extents, which represent a read-only volatile state.

DMinor already allows quantification over collections [BGHL10], but not over the Value
type. Such a quantification would be easy in Boogie. It is however questionable how useful
that would be.

Performance optimisations

From our tool chain the theorem prover Z3 takes the most time and would therefore be
a suitable target to optimise performance. Even though we cannot change Z3 as such, its
performance is impacted by the input, largely our axiomatisation, which consists of a lot of
quantifiers. Z3 comes with a tool called axiom profiler that shows which axioms are instan-
tiated the most. The number of instantiations can be reduced by using so-called quantifier
patterns [LM09], which tell Z3 when to instantiate a quantifier. A lot of our axioms already
have patterns, but we did not use profiling techniques to further optimise axioms and pat-
terns. However, too aggressive application of quantifier patterns will reduce the precision
of DVerify, because Z3 will reject more correct assertions if it cannot instantiate the neces-
sary quantifiers.

6.2. FUTURE WORK 62

Better scalability testing

We only tested scalability on very small samples. To get a more meaningful result one
should test larger samples, which could be obtained by porting to DMinor some of the ex-
amples the "M" product group released.

Inferring loop invariants

DMinor requires that each loop is annotated with a loop invariant for the accumulator, be-
cause type synthesis cannot in general synthesise such an invariant. Boogie has build-in
support for abstract interpretations [BCDT06]. Currently this is very limited, but it seems
possible to extend the abstract interpretation in Boogie to include support for our DMinor

types.

There are many other techniques for loop invariant inference, but to us most promising
seem to be [GMR09] and [BHMRO07].

Generating better invariants for Bind

Currently DVerify rejects some of the programs that DMinor can successfully verify. The
most common reason is the Bind construct. Unlike Acc, Bind does not carry a type annota-
tion and we have to infer one to produce a proper loop invariant.

For Bind, the DMinor type-synthesis can be used to infer loop invariants and it indeed pro-
duces correct loop invariants, but these are sometimes too complicated for Boogie to prove
them. We tried to simplify them, which works great for most samples, but for some sam-
ples the invariant is then too weak. In the current setup of DVerify, a program is translated
once and then fed to Boogie. In the future we could change DVerify such that it tries several
loop invariants. When Boogie rejects one program, that program is translated again with
a different loop invariant and fed again to Boogie. If one of the translations is accepted by
Boogie, it means that the original program does not produce a runtime error, because our
translation is always sound.

More precise purity checking

Another way to improve precision, and therefore reject less programs, is to improve pu-
rity checking. Currently there is a big gap between the theoretical definition of purity by
Bierman et al. [BGHL10], see Section 2.2.2, and the practical implementation in DMinor.
The problematic part in the purity definition is termination. The DMinor implementation
currently uses a very simple algorithm to determine if an expression is terminating: Any
recursive function is considered to be not terminating, so the expression in question must
not call any recursive function. Termination is undecidable in general, but there are better

6.2. FUTURE WORK 63

algorithms to prove termination. One is to check if all recursive calls decrease one of the
arguments, such as an entity or a natural number. This is what Coq checks if a recursive
function is defined there.

Error reporting

When an assertion fails, Boogie reports that fact, including an abstract execution trace that
outlines which branches were taken to reach the failing assertion and where that assertion
is located in the code. We have three ideas on how this can be improved.

Firstly, the assertion that fails could be used to reason what kind of error the original DMi-
nor program has. If for example an assertions that checks an operand to the greater oper-
ator fails, we know that said operand is not of type Integer as required. To implement that,
we would need additional information that maps the lines of the translated program to the
lines or expressions in the original program. In programming languages this information
is called debug symbols, which have to be generated during the translation process.

The next step would be to map the trace information Boogie gives us back to DMinor and
thereby give a trace in the original program. DMinor has only two expressions that can
branch: conditional and accumulate. There is a one-to-one correspondence between these
and their translation, so mapping the Boogie trace to the corresponding DMinor expres-
sions should be relatively easy provided a mapping of line numbers exists as outlined above.
DMinor cannot currently output such a trace.

The last and most complicated step would be counterexamples. A counterexample is one
state under which the assertion fails, meaning it gives values for relevant variables. For
example, a function that takes values of type Any and then performs the type-test we de-
scribed in our example in Section 2.3.3. While this type-test works for values of type Integer,
it would cause a runtime error for values of other types. So a valid counterexample would
be the value true for instance. Counterexamples can be generated by the output Z3 pro-
vides. Z3 produces a partial model that indicates, which constructors were used to create
the values of certain variables. That information can be used to reconstruct a DMinor value,
which can be displayed to the user. The fact that the models are partial means in particu-
lar that they can be wrong, so that executing the program with these values does not yield
an error. This is especially true because Z3 produces false-positives when it fails to prove
an assertion that is actually correct. DMinor has the ability to generate counterexamples
and solves the false-positive problem by evaluating type-tests to check if it is indeed a coun-
terexample. If not it still reports the error, but without a counterexample. To make this even
more precise one could add the wrong counterexample as an axiom to the proof obligation
and run Z3 again, thereby forcing Z3 to come up with another counterexample.

6.2. FUTURE WORK 64

6.2.2. Theory

In this thesis we focused on the theory and formalisation in Coq. Therefore the theory
leaves less open ends than the implementation.

Proving completeness of the transformation

A theoretical goal would be to prove the completeness of our translation, rather than just
soundness. Whereas soundness gives us that, if the DMinor program raises a runtime error,
then Boogie will reject its translation, completeness gives us the additional property that,
if Boogie rejects the program, then the original program evaluates to an error. This would
guarantee, in theory, that there are no false positives (programs that are rejected by Boogie,
but are actually correct with respect to the DMinor big-step semantics). A crucial step in
this direction would be to show the translation complete.

Theorem translation_complete : V ex r outx avoid st,
(Vs argexv, (arg,ex) = functions s —
contains_impure_refinements (subst_exp ex v arg) = false) —
(V s arg ex, (arg,ex) = functions s —
fv_exp ex = nil Vv fv_exp ex = (arg::nil)) —
contains_impure_refinements (subst_state ex st) = false —
((translate avoid ex outx) / st ~» CError —
Eval (subst_state ex st) Error
A\
Vst/,
(translate avoid ex outx) / st ~ CReturn st’ —
Eval (subst_state ex st) (st’ outx)).

As for soundness, the completeness of the translation can probably be combined with the
completeness of the Hoare logic. We expect our Hoare logic to be complete because Nipkow
proved completeness for a similar set of Hoare rules [Nip02b]. The verification condition
generator is, however, inherently incomplete, because of the user-provided annotations for
loop invariants and procedure pre- and postconditions. However, for loop-and-procedure-
free programs a completeness proof should be possible even for the verification condition
generator. Even more, one should be able to prove the expressive completeness of the verifi-
cation condition generator: for every operationally correct program without annotations,
there exists a set of annotations that makes the verification condition generator output a
valid formula.

Certified implementation

We have proven in theory that our translation is sound and we implemented this translation
in DVerify and tested it to be sound on a number of samples. However, there is no proof

6.2. FUTURE WORK 65

that our implementation in F# is sound or indeed implements our proven translation. Coq
has the ability to generate OCaml code from Coq source files, which is called extraction
[BBCT09]. This feature could be used to create a certified implementation, by exporting our
Coq translation function to OCaml code that can then be used as part of our F# project.

To make this extracted code produce proper Boogie programs in practise, we would have
to deal with a very big number of implementation details we ignored so far. For example,
we would would need to deal with the shallow embedding of the logic in Coq and relate
our formalisation of Boogie to the real Boogie. Our formalisation also has many primitives,
which would have to be mapped to our axiomatisation.

Translating higher-order functional languages

In this thesis we have related a type system with refinement types for a first-order func-
tional language to standard verification techniques. The open question still remains: Can
type systems for higher-order languages, such as F7 [BBF08], be explained in terms of
standard verification techniques? The Hoare logic for call-by-value functional programs by
Régis-Gianas et al. could be a good starting point in this direction [RGP08].

Bibliography

[ABO5]

[BBC+09]

[BBF08]

[BCD*06]

[BFG10]

[BGHL10]

[BHMOS]

[BHMRO7]

[BLOS]

[BLSO5]

[CMSTO09]

M. Abadi and B. Blanchet. Analyzing security protocols with secrecy types and
logic programs. Journal of the ACM (JACM), 52(1):102-146, 2005.

B. Barras, S. Boutin, C. Cornes, J. Courant, Y. Coscoy, D. Delahaye, D. de Rauglau-
dre,].C. Filliatre, E. Giménez, H. Herbelin, et al. The Coq proof assistant refer-
ence manual. INRIA, version, 8(2), 2009.

J. Bengtson, K. Bhargavan, C. Fournet, A.D. Gordon, and S. Maffeis. Refinement
Types for Secure Implementations. 21st IEEE Computer Security Foundations
Symposium (CSF 2008), 2008. http://research.microsoft.com/F7/.

M. Barnett, B.Y. Chang, R. DeLine, B. Jacobs, and K. Leino. Boogie: A modular
reusable verifier for object-oriented programs. In Formal Methods for Compo-
nents and Objects, page 364-387. Springer, 2006.

K. Bhargavan, C. Fournet, and A.D. Gordon. Modular verification of security
protocol code by typing. ACM SIGPLAN Notices, 45(1):445-456, 2010.

G. Bierman, A. Gordon, C. Hritcu, and D. Langworthy. Semantic Subtyping with
an SMT Solver. International Conference on Functional Programming, 2010.

M. Backes, C. Hritcu, and M. Maffei. Type-checking Zero-knowledge. 21st
IEEE Computer Security Foundations Symposium (CSF 2008), 2008. Im-
plementation available at http://www.infsec.cs.uni-sb.de/projects/
zk-typechecker.

D. Beyer, T. Henzinger, R. Majumdar, and A. Rybalchenko. Invariant synthesis for
combined theories. In Verification, Model Checking, and Abstract Interpretation,
page 378-394. Springer, 2007.

M. Barnett and K.R.M. Leino. Weakest-precondition of unstructured programs.
In Proceedings of the 6th ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering, page 82-87. Citeseer, 2005.

M. Barnett, K.R.M. Leino, and W. Schulte. The Spec# programming system: An
overview. Construction and analysis of safe, secure, and interoperable smart de-
vices, page 49-69, 2005.

E. Cohen, M. Moskal, W. Schulte, and S. Tobies. A practical verification method-
ology for concurrent programs. Microsoft Research, 2009.

66

http://research.microsoft.com/F7/
http://www.infsec.cs.uni-sb.de/projects/zk-typechecker
http://www.infsec.cs.uni-sb.de/projects/zk-typechecker

Bibliography 67

[CMTS09]

[DLOS]

[DMBO8]

[DMS*09]

[DNS05]

[ECMO6]

[FCBO8]

[FLL*02]

[Flo67]

[GMR09]

[Hoa69]

[JMR10]

[K1e99]

[K009]

[Lei05]

E. Cohen, M. Moskal, S. Tobies, and W. Schulte. A precise yet efficient mem-
ory model for C. Electronic Notes in Theoretical Computer Science, 254:85-103,
20009.

R. DeLine and K.R.M. Leino. BoogiePL: A typed procedural language for checking
object-oriented programs, 2005.

L. De Moura and N. Bjgrner. Z3: An efficient SMT solver. Tools and Algorithms
for the Construction and Analysis of Systems, page 337-340, 2008.

M. Dahlweid, M. Moskal, T. Santen, S. Tobies, and W. Schulte. VCC: Contract-
based modular verification of concurrent C. In 31st International Conference
on Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada, Com-
panion Volume. Citeseer, 2009.

D. Detlefs, G. Nelson, and J.B. Saxe. Simplify: A theorem prover for program
checking. Journal of the ACM (JACM), 52(3):473, 2005.

ECMA. Standard ECMA-335: Common Language Infrastructure (CLI), 4th edi-
tion, June 2006.

A. Frisch, G. Castagna, and V. Benzaken. Semantic subtyping: Dealing set-
theoretically with function, union, intersection, and negation types. J. ACM,
55(4), 2008.

C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, and R. Stata. Ex-
tended static checking for Java. In Proceedings of the ACM SIGPLAN 2002 Con-
ference on Programming language design and implementation, page 234-245.
ACM, 2002.

R.W. Floyd. Assigning meanings to programs. Mathematical aspects of computer
science, 19(19-32):1, 1967.

A. Gupta, R. Majumdar, and A. Rybalchenko. From tests to proofs. Tools and
Algorithms for the Construction and Analysis of Systems, page 262-276, 2009.

C.A.R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576-580, 1969.

R. Jhala, R. Majumdar, and A. Rybalchenko. Refinement type inference via ab-
stract interpretation. Arxiv preprint arXiv:1004.2884, 2010.

T. Kleymann. Hoare logic and auxiliary variables. Formal Aspects of Computing,
11(5):541-566, 1999.

N. Kobayashi and C.H.L. Ong. A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In Proceedings of LICS, vol-
ume 2009. Citeseer, 2009.

K.R.M. Leino. Efficient weakest preconditions. Information Processing Letters,
93(6):281-288, 2005.

Bibliography 68

[Lei08]
[LM09]

[LMS05]

[LMSL08]

[Mar10]

[Mic]

[Mic09]

[Mob06]

[Mor]

[Nip02a]

[Nip02b]

[NP08]

[PCG*10]

[Pie02]
[PT98]

[RGPOS]

[RT06a]

K.R.M. Leino. This is Boogie 2. Manuscript KRML, 178, 2008.

K.R.M. Leino and R. Monahan. Reasoning about comprehensions with first-
order SMT solvers. In Proceedings of the 2009 ACM symposium on Applied Com-
puting, page 615-622. ACM, 2009.

K.R.M. Leino, T. Millstein, and].B. Saxe. Generating error traces from
verification-condition counterexamples. Science of Computer Programming,
55(1-3):209-226, 2005.

K.R.M. Leino, M. Moskal, W. Schulte, and R. Leino. Verification condition split-
ting. Submitted manuscript, September, 2008.

C. Marinos. An Introduction to Functional Programming for .NET Developers.
MSDN Magazine, April 2010.

Microsoft. Questions and Answers - SQL Server Modeling Services. http://
msdn.microsoft.com/en-us/library/dd578299.aspx.

Microsoft. The Microsoft code name "M" Modeling Language Specification, Oc-
tober 2009. http://msdn.microsoft.com/en-us/library/dd548667.
aspx.

Mobius Project. Byte Code Level Specification Language and Program Logic,
2006.

J.H. Morris. Comments on “procedures and parameters”. Undated and unpub-
lished.

T. Nipkow. Hoare logics for recursive procedures and unbounded nondeter-
minism. In Computer Science Logic, page 155-182. Springer, 2002.

T Nipkow. Hoare Logics in Isabelle/HOL. In H. Schwichtenberg and R. Stein-
briiggen, editors, Proof and System-Reliability, pages 341--367. Kluwer, 2002.

M. Naik and]. Palsberg. A type system equivalent to a model checker. ACM
Transactions on Programming Languages and Systems (TOPLAS), 30(5):29,
2008.

B. Pierce, C. Casinghino, M. Greenberg, V. Sjoberg, and B. Yorgey. Software Foun-
dations. http://www.cis.upenn.edu/~bcpierce/sf/, 2010.

B.C. Pierce. Types and programming languages. The MIT Press, 2002.

B. C. Pierce and D. N. Turner. Local type inference. In ACM Symposium on Prin-
ciples of Programming Languages (POPL'98), pages 252--265. ACM, 1998.

Y. Régis-Gianas and F. Pottier. A Hoare logic for call-by-value functional pro-
grams. In Mathematics of Program Construction, page 305-335. Springer, 2008.

S.Ranise and C. Tinelli. Satisfiability modulo theories. Trends and Controversies-
IEEE Intelligent Systems Magazine, 21(6):71-81, 2006.

http://msdn.microsoft.com/en-us/library/dd578299.aspx
http://msdn.microsoft.com/en-us/library/dd578299.aspx
http://msdn.microsoft.com/en-us/library/dd548667.aspx
http://msdn.microsoft.com/en-us/library/dd548667.aspx
http://www.cis.upenn.edu/~bcpierce/sf/

Bibliography 69

[RTO6b]

[Sel09]

[Tar]

[Wil05]

[Win93]

[WNO04]

S. Ranise and C. Tinelli. The satisfiability modulo theories library (SMT-LIB).
www. SMT-LIB. org, 2006.

C. Sells. Build Metadata-Based Applications With The “Oslo” Platform. MSDN
Magazine, February 2009.

T. Tarrach. DVerify. http://www.infsec.cs.uni-saarland.de/
projects/dverify.

R. Wilkes. NGen Revs Up Your Performance with Powerful New Features. MSDN
Magazine, April 2005.

G. Winskel. The formal semantics of programming languages: an introduction.
The MIT Press, 1993.

M. Wildmoser and T. Nipkow. Certifying Machine Code Safety: Shallow versus
Deep Embedding. In K. Slind, A. Bunker, and G. Gopalakrishnan, editors, Theo-
rem Proving in Higher Order Logics (TPHOLs 2004), volume 3223 of LNCS, pages
305--320. Springer, 2004.

http://www.infsec.cs.uni-saarland.de/projects/dverify
http://www.infsec.cs.uni-saarland.de/projects/dverify

A. DMinor big-step semantics

In this appendix we reproduce the complete DMinor big-step semantics as it is formalised in
Cog. This work was not done by us, but taken from the DMinor formalisation [BGHL10].

Inductive Eval: Exp — Result — Prop :=
| eval_value : Vv,
Eval (Value v) (Return v)
| eval_un_op_1: Ve op,
Eval e Error —
Eval (UnOp op €) Error
| eval_un_op_2:Veopy,
Eval e (Returnv) —
(Cexists v/, un_op_eval op v V') —
Eval (UnOp op e) Error
| eval_un_op_3:VeopvV,
Eval e (Returnv) —
un_op_evalopvVv —
Eval (UnOp op e) (Return V')
| eval_bin_op_1_1:Vele2op,
Eval el Error —
Eval (BinOp op el e2) Error
| eval_bin_op_1.2:Vele2opyv,
Eval el (Return v) —
Eval e2 Error —
Eval (BinOp op el e2) Error
| eval_bin_op_2:Vele2opvlv2,
Eval el (Return vl) —
Eval e2 (Return v2) —
(Cexists V/, bin_op_eval op viv2 V') —
Eval (BinOp op el e2) Error
| eval_bin_op_3:Vele2opvliv2V,
Eval el (Return vl) —
Eval e2 (Return v2) —
bin_op_eval opviv2 Vv —
Eval (BinOp op el e2) (Return V')

70

71

| eval_cond_1:Vele2e3r,
Evalelr —
r # Return (v_tt) —
r # Return (v_ff) —
Eval (If el e2 e3) Error
| eval_cond_ 2. 1:Vele2e3r,
Eval el (Return v_tt) —
Evale2r —
Eval (Ifele2e3)r
| eval_cond_2.2:Vele2e3r,
Eval el (Return v_ff) —
Evale3r—
Eval (Ifele2e3)r
| eval_let_1:Vxele2,
Eval el Error —
Eval (Let x el e2) Error
| eval_let 2:Vxele2vr,
Eval el (Return v) —
Eval (subst_expe2vx)r—
Eval (Letxele2)r
| eval_entity_1: V lesl les2 lj ej,
(V1e,In(l,e) les1 — v, Eval e (Return v)) —
Eval ej Error —
Eval (Entity (les1 ++ (lj,ej) :: les2)) Error
| eval_entity_2: Vlesv,
is_Ev=true —
(¥ li ei, In (li,ei) les — F vi,

Eval ei (Return vi) A v_has_field li v = true A v_dot liv =vi) —

(Vli, v_has_field liv = true — J ei, In (li, ei) les) —
Eval (Entity les) (Return v)
| eval_dot 1 1:Vel,
Eval e Error —
Eval (Dot el) Error
| eval_dot_1.2:Vely,
Eval e (Return v) —
is_E v A v_has_field | v = false —
Eval (Dot e l) Error
| eval_dot 2:Vely,
Eval e (Returnv) —
is_Ev A v_has_field | v =true —
Eval (Dot el) (Return (v_dot | v))
| eval_add_1:Vele2,
Eval el Error —
Eval (Add el e2) Error

72

| eval_add_2_1:Vele2vl,
Eval el (Return vl) —
Eval e2 Error —
Eval (Add el e2) Error
| eval_add_2_2:Vele2vlv2,
Eval el (Returnvl) —
Eval e2 (Return v2) —
is_Cv2 = false —
Eval (Add el e2) Error
| eval_add_3:Vele2vlv2,
Eval el (Returnvl) —
Eval e2 (Return v2) —
is_Cv2 =true —
Eval (Add el e2) (Return (v_add v1 v2))
| eval_appl_1: Vfe,
Eval e Error —
Eval (App f e) Error
| eval_appl_2:Vfargexrve,
Eval e (Returnv) —
(arg,ex) = functions f —
Eval (subst_exp exvarg) r—
Eval (Appfe)r
| eval_accum_1_1:Vxyele2e3,
Eval el Error —
Eval (Acc x ely e2 e3) Error
| eval_accum_1 2:Vxyele2e3vl,
Eval el (Return vl) —
is_C vl = false —
Eval (Accx ely e2 e3) Error
| eval_accum_lets : Vxelye2e3rvlvs,
Eval el (Return vl) —
is_Cvl =true —
(Permutation vs (vb_to_vs (out_Cv1))) —
Eval (Lety e2 (let_seqy (List.map (fun v = subst_exp e3vx) vs) (Vary)))r —
Eval (Accxelye2e3)r
| eval_test_wrong: VeT,
Eval e Error —
Eval (In e T) Error
| eval_test_any: Vev,
Eval e (Return v) —
Eval (In e Any) (Return v_tt)
| eval_test_integer: Vev,
Eval e (Returnv) —
Eval (In e Integer) (Return (v_logical (In_Integer v)))

73

| eval_test_text: Vev,
Eval e (Return v) —
Eval (In e Text) (Return (v_logical (In_Text v)))
| eval_test_logical : Ve,
Eval e (Return v) —
Eval (In e Logical) (Return (v_logical (In_Logical v)))
| eval_test_entity 1:VelTvr,
Eval e (Returnv) —
is_E v A v_has_field | v =true —
Eval (In (Value (v_dotlv))T)r —
Eval (In e (Entity IT)) r
| eval_test_entity 2: VelTy,
Eval e (Returnv) —
is_Ev A v_has_field | v = false —
Eval (In e (Entity I T)) (Return v_ff)
| eval_test_coll_1: VeTy,
Eval e (Returnv) —
is_Cv =false —
Eval (In e (Coll T)) (Return v_ff)
| eval_test_coll 2: VeTvV,
Eval e (Returnv) —
is_Cv =true —
v_memV v = true —
Eval (In (Value v') T) Error —
Eval (In e (Coll T)) Error
| eval_test_coll 3.1:VeTy,
Eval e (Return v) —
is_Cv=true —
(VV/,v_-mem V' v =true — Eval (In (Value V') T) (Return v_tt)) —
Eval (In e (Coll T)) (Return v_tt)
| eval_test_coll 3 2:VeTvVv”,
Eval e (Returnv) —
is_Cv=true —
(VV,v_memV v =true — 3V,
(Eval (In (Value v') T) (Return v"') A In_Logical v"’ = true)
)—
v_memVv"” v = true —
Eval (In (Value v’) T) (Return v_ff) —
Eval (In e (Coll T)) (Return v_ff)
| eval_test_refine_1:VelxTe2y,
Eval el (Returnv) —
Eval (In (Value v) T) Error —
Eval (In el (Refine x T e2)) Error
| eval_test_refine_ 2 1: VelxTe2vlV,

Eval el (Returnvl) —
Eval (In (Value v1) T) (Return v') —
Eval (subst_exp e2 v1 x) Error —
Eval (In el (Refine x T €2)) Error

| eval_test_refine_2_ 2: VelxTe2vlVv v2,
Eval el (Returnvl) —
Eval (In (Value v1) T) (Returnv') —
Eval (subst_exp e2 vl x) (Return v2) —
In_Logical v/ A In_Logical v2 = false —
Eval (In el (Refine x T e2)) Error

| eval_test_refine_3: VelxTe2vliv v2,
Eval el (Returnvl) —
Eval (In (Value v1) T) (Return v') —
Eval (subst_exp e2 v1 x) (Return v2) —
In_Logical v/ A In_Logical v2 = true —
Eval (In el (Refine x T e2)) (Return (O_And V' v2)).

B. Complete Coq definitions

This appendix shows a list of relevant Coq files that contain the most important definitions,
theorems and lemmas. The proofs are not printed here as they are very hard to read without
the interactive proof assistant showing the proof state. The reader is encouraged to take a
look at the digital Coq files for details on the proofs.

File Lines Description

Lib.v 374 This file contains basic lemmas, which are useful, but not present
in the Coq library.

Imp.v 658 In Imp.v we give our while language and the operational seman-
tics. A detailed explanation is given in Section 3.2.

Hoare.v 1014 This file contains our Hoare logics, which is described in Sec-
tion 3.3.

WPy 275 The weakest precondition is explained in Section 3.4.

VCgen.v 245 The file VCgen.v contains the verification condition generator,
which is described in detail in Section 3.5

Sets.v 97 This file contains just a number of wrappers for the Coq Uniset

implementation. These wrappers make the usage of sets simpler,
because we know that we only want sets containing strings.

SubstState.v 749 This file contains both, the the simultaneous substitution we
briefly outlined in Section 2.2.3 and the relation of operational
and logical semantics from Section 2.2.4.

Translate.v 448 Apartfrom the translation described in Section 4.2, the file Trans-
late.v also contains a number of helping lemmas needed by the
soundness proof.

Soundness.v 1581 Last but not least, the file Soundness.v contains the soundness
proof described in Section 4.4 and the corollaries relating the
soundness of the translation to the Hoare logics and the verifi-
cation condition generator.

Sum 5441

The files Lib.v, WPy, VCgen.v and Sets.v are not listed below, either because all impor-
tant lemmas from them are explained in the thesis already or because they merely contain
helper lemmas.

75

B.1. IMPV 76

B.1. Imp.v

Require Export Lib.

Require Export Model.

Require Export LogicalSemantics.

Require Import Coq.Logic.FunctionalExtensionality.
Require Import BigStepSemantics.

Theorem env_update_eq: V nVst,
(env_updatestVn)V=n.

Theorem env_update_neq: V V2 V1 n st,
(beq_str V2 V1 = false) —
(env_update st V2 n) V1 = (st V1).

Definition beg_env (envl:Env) env2 :=
forall_bool (fun x = syn_beq_val (envl x) (env2 x)).

Lemma beqg_env_true_x: V envl env2 x,
beqg_env envl env2 = true —
envl x =env2 x.

Lemma beq_env_true : V envl env2,
beqg_env envl env2 = true —
envl = env2.

Theorem env_update_shadow : V x1 x2 k1 k2 (f: Env),
(env_update (env_update f k2 x1) k2 x2) k1 = (env_update f k2 x2) k1.

Theorem env_update_shadow_fun : ¥ x1 x2 k2 (f: Env),
(env_update (env_update f k2 x1) k2 x2) = (env_update f k2 x2).

Theorem env_update_same : V¥ x1 k1 k2 (f : Env),
fkl=x1—
(env_update f k1 x1) k2 = f k2.

Theorem env_update_same_fun : V x1 k1 (f : Env),
fkl=x1—
(env_update f k1 x1) =f.

Theorem env_update_permute : V x1 x2 k1 k2 k3 f,
(beq_str k2 k1 = false) —
(env_update (env_update f k2 x1) k1 x2) k3 = (env_update (env_update f k1 x2) k2 x1) k3.

Theorem env_update_permute_fun: V x1 x2 k1 k2 f,
(beq_str k2 k1 = false) —
(env_update (env_update f k2 x1) k1 x2) = (env_update (env_update f k1 x2) k2 x1).

Theorem env_update_lookup : V x1 k1 (f:Env),
env_update f k1 x1 k1 = x1.

Theorem env_update_lookup’ : V x1 k1 (f:Env) k,

B.1. IMPV

77

beq_str k1 k = true —
env_update f k1 x1 k = x1.

Theorem env_update_ignore : V x1 k1 k2 (f:Env),
beq_str k1 k2 = false —
env_update f k1 x1 k2 =f k2.

Theorem env_update_VAR: VstanOxnly,
beq_str a x = false —
(env_update (env_update (env_update stan0)xnl)a(sta))y
= (env_update stx nl)y.

Theorem env_update_VAR_fun: VstanOxnl,
beq_str a x = false —
(env_update (env_update (env_update st a n0) x n1) a (st a))
= (env_update st x n1).

Definition X: string :="X".
DefinitionY: string :="Y".
B.1.1. Embedding of the logic

Definition Assertion := Env — bool.

B.1.2. Expressions

Inductive expr: Type:=
| EValue : Value — expr
| EVar : string — expr
| ECollAdd : expr — expr — expr
| ECollRem : expr — expr — expr
| ECollEmpty : expr — expr
| EEntUpd : string — expr — expr — expr
| EDot : expr — string — expr
| EIn : Assertion — expr
| EOr : expr — expr — expr
| ENot : expr — expr
| EEQ : expr — expr — expr
| ELt : expr — expr — expr
| EGt : expr — expr — expr
| EPlus : expr — expr — expr
| EMinus : expr — expr — expr
| ETimes : expr — expr — expr
| EAnd : expr — expr — expr.

B.1. IMPV 78

Program Fixpoint eeval (st: Env) (e: expr) {struct e} : Result:=
match ewith
| EValue v = Return v
| EVar x = Return (st x)
| ECollAdd c e = LBind (eeval st c) (func =
(LBind (eeval st e) (fune =
ifis_C cthen Return (v_add e c) else Error)))
| ECollEmpty ¢ = LBind (eeval st c¢) (fun c =
ifis_Ccthen Return (v_empty c) else Error)
| ECollRem c e = LBind (eeval st ¢) (func =
(LBind (eeval st e) (fune =
ifis_C c then Return (v_remove e c) else Error)))
| EEntUpd | v e = LBind (eeval st v) (fun val =
(LBind (eeval st e) (fun ent =
ifis_E ent then Return (v_eupdate | val ent) else Error)))
| EDot e | = LBind (eeval st e) (fun x =
ifis_E x A v_has_field | x then Return (v_dot | x) else Error)
| EIn a = Return (v_logical (a st))

| ENot e = LBind (eeval st e) (fun x =

if In_Logical x then Return (O_Not x) else Error)
| EEq a b = LBind (eeval st a) (funa =

(LBind (eeval st b) (fun b = Return (O_EQ a b))))
| ELt a b = LBind (eeval st a) (fun x1 =

(LBind (eeval st b) (fun x2 =

if In_Integer x1 A In_Integer x2 then Return (O_LT x1 x2) else Error)))
| EGt a b = LBind (eeval st a) (funx1 =

(LBind (eeval st b) (fun x2 =

if In_Integer x1 A In_Integer x2 then Return (O_GT x1 x2) else Error)))
| EPlus a b = LBind (eeval st a) (fun x1 =

(LBind (eeval st b) (fun x2 =

if In_Integer x1 A In_Integer x2 then Return (O_Sum x1 x2) else Error)))
| EMinus a b = LBind (eeval st a) (fun x1 =

(LBind (eeval st b) (fun x2 =

if In_Integer x1 A In_Integer x2 then Return (O_Minus x1 x2) else Error)))
| ETimes a b = LBind (eeval st a) (fun x1 =

(LBind (eeval st b) (fun x2 =

if In_Integer x1 A In_Integer x2 then Return (O_Mult x1 x2) else Error)))
| EAnd a b = LBind (eeval st a) (fun x1 =

(LBind (eeval st b) (fun x2 =

if In_Logical x1 A In_Logical x2 then Return (O_And x1 x2) else Error)))
| EOr a b = LBind (eeval st a) (fun x1 =

(LBind (eeval st b) (fun x2 =

if In_Logical x1 A In_Logical x2 then Return (O_Or x1 x2) else Error)))

B.1. IMPV

end.

Definition proc_name := string.

B.1.3. The commands

Inductive com: Type :=
| CSkip : com
| CAss : string — expr — com
| CSeq : com — com — com
| CIf : string — com — com — com
| CWhile : expr — Assertion — com — com
| CAssert : Assertion — com
| CPick : string — string — com
| CCall : proc_name — com
| CBackup : string — com — com.

Tactic Notation "com_cases" tactic(first) tactic(c) :=
first;
[c "CSkip" | c "CAss" | ¢ "CSeq" | ¢ "CIf" | ¢ "CWhile"
| c "CAssert" | ¢ "CPick" | ¢ "CCall" | ¢ "CBackup"].

Notation "'SKIP" :=

CSkip.
Notation"cl;c2":=

(CSeq cl c2) (at level 80, right associativity).
Notation"l':='a":=

(CAss | a) (at level 60).
Notation ""WHILE'b 'DO' ¢ 'LOOP™ :=

(CWhile b (fun st = true) c) (at level 80, right associativity).
Notation ""WHILE'b 'INV'a'DO' ¢ 'LOOP" :=

(CWhile b a c) (at level 80, right associativity).
Notation "'IFB'el 'THEN'e2 'ELSE'e3":=

(Cif el e2 e3) (at level 80, right associativity).
Notation "ASSERT'b" :=

(CAssert b) (at level 80, right associativity).
Notation"i':= pick'e" :=

(CPick i e) (at level 80, right associativity).
Notation "'CALL'i" :=

(Ccalli) (at level 80, right associativity).
Notation "'BACKUP'x 'IN'c" :=

(CBackup x c) (at level 80, right associativity).

B.1. IMPV

80

B.1.4. Calling convention for procedure calls

Definition call_arg := "arg".
Definition call_ret:="ret".

Definition fun_callxie:=
(backup x in (call_arg :=e; (call i); x := EVar call_ret)).

Module Type ImpArgs.
Parameter procs: proc_name — com.
End ImpArgs.

Module ImpM (Args : ImpArgs).

B.1.5. Operational semantics

Inductive CResult :=
| CError : CResult
| CReturn : Env — CResult.

Reserved Notation"cl'/'st'~'st'™ (at level 40).

Inductive ceval: Env — com — CResult — Prop :=
| CESkip : V st,
skip / st ~» (CReturn st)
| CEAss : Vst al (n:Value) |,
eeval st al = (Return n) —
(I:=a1) / st ~» CReturn (env_update st | n)
| CESeq : V c1 c2 stst’ st”,
cl /st ~ CReturn st’ —
c2 /st~ st —
(c1; c2) / st~ st”
| CESeqErr: V c1c2 st,
cl /st ~» CError —
(c1; c2) / st ~ CError
| CEIfTrue : Vst st’ blclc2,
syn_beq_val (st b1) v_tt = true —
cl /st~ st/ —
(if bl then c1 else c2) / st ~ st/
| CEIfFalse : Vst st’ bl cl c2,
syn_beqg_val (st b1l) v_tt = false —
€2 /st~ st/ —
(if b1 then c1 else c2) / st ~ st
| CEWhileEnd : Vbl balstcl,
eeval st b =Return bl —
syn_beq_val bl v_tt = false —

B.1. IMPV

81

(while b inv al do c1 end) / st ~~ CReturn st
| CEWhileLoop : V st st’ st” blbalcl,

eeval st b = Return bl —

syn_beq_val b1 v_tt = true —

cl / st ~ CReturn st’ —

(while b inv a1l do c1 end) / st’ ~ st —

(while b inv al do c1 end) / st ~ st”
| CEWhileLoopErr: Vstblbalcl,

eeval st b =Return bl —

syn_beq_val bl v_tt = true —

cl / st ~» CError —

(while b inv al do cl1 end) / st ~» CError
| CEAssert : V (st:Env) (b:Assertion),

b st = true —

(assert b) / st ~ CReturn st
| CEAssertErr: Vst b,

b st = false —

(assertb) / st ~» CError
| CEPick : V' stx xcv,

is_C (st xc) = true —

v_memv (st xc) = true —

(x := pick xc) / st ~» CReturn (env_update st x v)
| CECall : V st st’ pn,

Args.procs pn / st~ st’ —

(call pn) / st~ st/
| CEBackup : Vstst’' v,

c / st ~ (CReturn st') —

(backup v in c) / st ~ CReturn (env_update st v (st’ v))
| CEBackupErr: Vstvec,

¢ / st ~ CError —

(backup vin c) / st ~> CError

where "c1 / st~ st := (ceval st c1 st').

Tactic Notation "ceval_cases" tactic(first) tactic(c) := first; [
¢ "CESkip" | ¢ "CEAss" | ¢ "CESeq" | ¢ "CESeqErr"
¢ "CEIfTrue" | c "CEIfFalse" | ¢ "CEWhileEnd" | ¢ "CEWhileLoop" |
¢ "CEWhileLoopErr" | ¢ "CEAssert" | ¢ "CEAssertErr" | ¢ "CEPick" |
¢ "CECall" | ¢ "CEBackup" | ¢ "CEBackupErr"].

Lemma seq_ass : V ¢l c2 c3 st st/,
(c1;c2;¢3) /st~ st <
((c1; €2); c3) / st~ st'.

B.1. IMPV 82

B.1.6. Call-depth-indexed operational semantics

Definition CProperres :=
match reswith
| CError = False
| CReturn st = True
end.

Definition out_CResult res :=
match reswith
| CError = env_empty
| CReturn x = x
end.

Definition bind_CResult (xo : CResult) (f: Env — CResult)

: CResult :=
match xowith
| CError = CError
| CReturn x = f x
end.
Reserved Notation'cl'/'st'—'n'~'st" (at level 40).

Inductive ceval_indexed : Env — com — nat — CResult — Prop :=

| CEnSkip : Vst n,
ceval_indexed st CSkip n (CReturn st)
| CEnAss : V st al (n:Value) | nidx,
eeval stal = Returnn —
(CAsslal) / st — nidx ~ CReturn (env_update st | n)
| CEnSeq : V clc2stst’ st”n,
cl /st —n ~» CReturn st —
c2/st —n~ st —
(CSeqclc2) /st—n~st”
| CEnSeqErr: ¥V clc2stn,
cl /st —n ~» CError —
(CSeq clc2) / st — n ~» CError
| CEnlfTrue: Vstst'blclc2n,
syn_beqg_val (st bl) v_tt = true —
cl/st—n~sst —
(Clifblclc2)/st—n~sst/
| CEnlfFalse : Vstst'blclc2n,
syn_beg_val (st b1) v_tt = false —
c2/st—n~sst —
(Clifblclc2) /st—n~sst/
| CEnWhileEnd : Vbl balstcln,

B.1. IMPV

83

eeval st b = Return bl —
syn_beq_val b1 v_tt = false —
(CWhile b a1 c1) / st — n ~~ CReturn st
| CEnWhileLoop : Vst st’ st” blbalcln,
eeval st b = Return bl —
syn_beq_val bl v_tt = true —
cl /st —n ~» CReturn st’ —
(CWhilebalcl) /st —n~st” —
(CWhilebalcl) /st—n~st”
| CEnWhileLoopErr: Vstblbalcln,
eeval st b =Return bl —
syn_beq_val bl v_tt = true —
cl /st—n ~> CError —
(CWhile b a1 c1) / st — n ~» CError
| CEnAssert : V/ (st:Env) (b:Assertion) n,
b st = true —
(CAssert b) / st — n ~» CReturn st
| CEnAssertErr: Vst b n,
b st = false —
(CAssert b) / st — n ~» CError
| CEnPick : ¥V stxxcvn,
is_C (st xc) = true —
v_memv (st xc) = true —
(CPick x xc) / st — n ~~ CReturn (env_update st x v)

| CEnCall : Vst st’ pnn,
Args.procs pn / st—n ~ st’ —
(call pn) /st —Sn ~ st/

| CEnBackup : Vstst’ven,
¢/ st—n~~ (CReturnst’) —
(CBackup v ¢) / st — n ~» CReturn (env_update st v (st’ v))
| CEnBackupErr: Vstvcn,
¢/ st— n~» CError —
(CBackup v c) / st — n ~~ CError
where "cl1'/'st'—'n'~'st" := (ceval_indexed st c1 n st’).
Lemma ceval_step_more: Vili2 st st’c,
i1<i2—c/st—il~st —
c/st—i2~ st

Lemma exec_iff_execn: V c st st/,
c/st~st' <> 3In,c/st—n~ st

End ImpM.

B.2. HOARE.V

84

B.2. Hoare.v

Require Export Imp.

Module Type HoareArgs.
Parameter procs: proc_name — com.
Parameter ZType: Type.
Parameter ZType_inhabited : ZType.
End HoareArgs.

Module HoareM (Args : HoareArgs).
Module ImpSpecificArgs := ImpM Args.
Export ImpSpecificArgs.

B.2.1. Definition of the semantic Hoare triples

Definition Assertion := Args.ZType — Env — bool.

Definition check_post Q (z:Args.ZType) st’ :=
match st' with
| CError = False
| CReturn st = Q z st = true
end.

Definition check_post’ Q (z:Args.ZType) st :=
Jst”, st’ = CReturn st” A Qz st” = true.

Lemma check_post_identical : ¥V Q z st/,
check_post Q z st’ <+ check_post’ Q z st'.

Lemma check_post_true : V Q (z:Args.ZType) st,
check_post Q z (CReturn st) —
Q z st = true.

Lemma check_post_holds : V Q (z:Args.ZType) st,
Qzst=true —
check_post Q z (CReturn st).

Definition no_errorc:=
Vstst/, c/st~ st —
CProper st'.

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=
Vst st/,
c/st~st
— (V z:Args.ZType, P z st = true
— check_post Q z st').

Notation"{P} c{Q}":=(hoare_triple P c Q) (at level 90).

B.2. HOARE.V

85

Definition valid_formula f:=V (z:Args.ZType) (st:Env), f z st = true.

Lemma hoare_triple_pre_valid_no_error: VcP Q,
valid_formula P —
{P}c{Q} — no_errorc.
Definition valid (H:Prop) := H.
Definition hoare_triple_n n (P:Assertion) (c:com) (Q:Assertion) : Prop :=
Y st st/,
c/st—n~st
— (V z:Args.ZType, P z st = true
— check_post Qz st').
Notation "= "' {P}c{Q}":=(hoare_triple_n n P c Q) (at level 89).
Definition context := list (Assertion x com x Assertion).
Fixpoint sem_context ct { structct}:=
match ctwith
| nil = True
| (P,c,Q):cl={P}c{Q} Asem_contextcl
end.
Fixpoint sem_context_nnct{structct}:=
match ctwith
| nil = True
| (P,c,Q)cl=Fn,{P}c{Q} Asem_context nncl
end.
Lemma sem_context_n_in: VnctPcQ,
In (P,c,Q) ct —
sem_context_n nct —
Fn{P}c{Q}.
Definition ext_hoare_triple CPcQ:=
sem_contextC— {P}c{Q}.
Notation"C = {P}c{Q}":= (ext_hoare_triple CP cQ) (at level 85).

Definition ext_hoare_tripleennCPcQ:=
sem_context nnC— =, {P}c{Q}.

Notation"C =, {P}c{Q}":=(ext_hoare_triple_.n n CP c Q) (at level 85).

Definition ext_hoare_judgement C1C2 :=
sem_context C1 — sem_context C2.

Notation "C1 |= C2" := (ext_hoare_judgement C1 C2) (at level 85).

Definition ext_hoare_judgement_n (n:nat) C1 C2:=
sem_context_n n C1 — sem_context_n n C2.

Notation "C1'E'""/' C2" := (ext_hoare_judgement_n n C1 C2) (at level 85).

Lemma hoare_iff n: VPcQ {P}c{Q} < Vn E,{P}c{Q}

B.2. HOARE.V

Lemma sem_iff_n: V C, sem_context C ++ V n, sem_context_n n C.

Lemma ext_hoare_if n: VC1PcQ,
(VnClE,{P}c{Q})—ClE={P}c{Q}

Lemma no_context_nil_.n: VPRcn,
nilEn{P}c{R}<En{P}c{R}
Lemma no_context_nil : VPR,
nil=E{P}c{R}+{P}c{R}
Definition eeval_returnenve:=
match eeval envewith
| Error = v_null

| Return x = x
end.

B.2.2. Lemmas for deriving semantic Hoare triples
Skip command

Theorem hoare_skip_n:VCPn,
CEn{P}skip{P}.

Assignment command

Definition assn_sub P x a: Assertion :=
fun (z:Args.ZType) (st: Env) = P z (env_update st x (eeval_return st a)).

Theoremhoare_asgn_n: VCPxan,
CkEn{assnsubPxa}(x:=a){P}.

Theorem hoare_asgn_eq: VCPP' Van,
P’ =assn_subPVa

S Cla{P}(Vi=a) {P).

Sequence command

Theorem hoare_seq_.n: VCPQRclc2n,
CEn{Q}c2{R}
—CEn{P}cl{Q}
—CE{P}cl;c2{R}.

Corollary hoare_seq: VCPQRclc2,

B.2. HOARE.V 87

CE{Q}c2{R}
—CE{P}c1{Q}
—CE{P}cl;c2{R}.

Lemma hoare_seq_ass: Vclc2c3PQ,
{P}(cl;c2;c3){Q}«+
{P}((c1;c2);c3){Q}.

If command

Definition bassni: Assertion :=
fun z st = syn_beq_val (st i) v_tt.

Lemma bassn_z_independent : V b (z ' : Args.ZType) st,
bassn b z st = bassn b 7’ st.

Lemma bexp_eval_true : V b st (z:Args.ZType),
syn_beg_val (st b) v_tt = true — (bassn b) z st = true.

Lemma bexp_eval_true_inv: V b st (z:Args.ZType),
(bassn b) z st = true — syn_beq_val (st b) v_tt = true.

Lemma bexp_eval_false : V b st (z:Args.ZType),
syn_beq_val (st b) v_tt = false — (bassn b) z st = false.

Lemma bexp_eval_false_inv : V b st (z:Args.ZType),
(bassn b) z st = false — syn_beq_val (st b) v_tt = false.

Theoremhoare_if n: VCPQbclc2n,
C = n { fun (z:Args.ZType) st = (P zst) A (bassnbzst) }c1{Q}—
C = n {fun (z:Args.ZType) st = (Pzst) A (— (bassnbzst))}c2{Q} —
CEn{P}ifbthenclelsec2{Q}.

While command

Definition eeval_boolste:=
match eeval stewith
| Return v = syn_beq_val v v_tt
| Error = false
end.

Theorem hoare_while_.n: VCPbczn,
CEn{funzst=PzstAeeval boolstb}c{P}—
CEn{P}

(while b inv (fun st =- P z st) do c end)
{funzst= Pzst A — (eeval_boolstb)}.

B.2. HOARE.V

Assert Command

Theorem hoare_assert_n : V C (Q:Assertion) (b:Imp.Assertion) n,
CEn{funzst=DbstAQzst}assertb{Q}.

Pick command

Theorem hoare_pick_n: VYV CPxcxn,
CEn{funzst=
forall_bool (fun v =-implb (v_mem v (st xc)) (assn_sub P x (EValue v) z st)) }
x := pick xc

{P}.

Backup command

Theorem hoare_backup_n: VCPQxcn,
(Vst/,CEn{funzst=PzstAbeg_envst st}
c
{funzst= Qz (env_update st x (stx)) })
— CEn{P}backupxinc{Q}.

The consequence rule

Theorem hoare_consequence_n: V C (PP’ QQ’: Assertion) cn,
CEn{P}c{Q}—
(Vstst/,
(V (z:Args.ZType), P’ z st = true — check_post Q' z st’) —
(V (z:Args.ZType), P z st = true — check_post Q z st')) —
CEn{P}c{Q}.
Definition assimp (P Q:Assertion) :=
V (z:Args.ZType) st, P z st = true — Q z st = true.
Notation"P — Q" := (assimp P Q) (at level 89).

Corollary hoare_consequence_pre_n:V C (P P’ Q: Assertion) c n,
CEn{P}c{Q}—
P—P)—
CEn{P}c{Q}.
Definition postimp (P Q:Assertion) :=
Y (z:Args.ZType) st, check_post P z st — check_post Q z st.
Notation"P — Q" := (postimp P Q) (at level 89).

B.2. HOARE.V

89

Corollary hoare_consequence_post_n: V C (P QQ’: Assertion) cn,
Cen{P}c{Q}—
Q@ —aq)—
CEn{P}c{Q}

Theorem hoare_consequence_post : V (P Q Q' : Assertion) c,
{P}c{Q'}—
Q@ —aq)—
{P}c{Q}.

B.2.3. Procedure calls

Theorem hoare_context_.n: VCPcQn,

In (P,c,Q) C—
CEn{P}c{Q}

Lemma ext_hoare_hoare : V C1,

(V (PQ: Assertion) ¢, In(P,cQ)Cl - C1={P}c{Q}).

Lemma split_judgement: VC1C2PcQ,
ext_hoare_judgement C1 ((P,c, Q) :: C2) <>
ClE={P}c{Q}A(C1lEC2).

Lemma split_judgement_n: VC1C2PcQn,
ClE=n((P,c,Q):: C2) «
Clln{P}c{Q}A(ClE,C2).

Lemma hoare_call_lookup : VCP Qx,
CE{P}callx{Q}+«+ CE={P}Args.procsx{Q}.

Lemma hoare_context_more: VP cQili2,
i1<i2 —

Fe{P}c{Q}=Fu{P}c{Q}.

Lemma sem_context_more : V Cili2,
i1<i2 —
sem_context_n i2 C — sem_context_nil C.

Lemma call_lookup_n: V x st st’ n,

(call x) / st — S n ~ st’ <> Args.procs x / st — n ~ st’.

Lemma hoare_call_lookup_n: ¥V nP Qx,

s {P}callx{Q}« |=n {P}Args.procsx { Q}.

Theorem hoare_call_simple_n: VCP xQ,
(Vn',(P,callx,Q) :: Cl= v {P}Args.procsx{Q}) —
(Vn,CEn{P}callx{Q}).

B.2. HOARE.V 90

Mutually recursive procedure calls

Lemma ext_judgement_if_n:V C1C2,
(Vn,Cll,C2) = Cl}=C2.

Lemma sem_context_n_app: ¥V n C1C2,
sem_context_n n (C1 ++ C2) <> sem_context_n n C1 A sem_context_n n C2.

Lemma sem_context_0_call : V C,
(VPcQ In(P,c,Q)C— Jx c=call x) — sem_context_n O C.

Theorem hoare_call_n: V C1 C2,
(VPcQ,In(PcQ)C2 —dxc=callx) —
(Vn’ (PQ: Assertion) x, In (P,CALL x,Q) C2 — C1 ++ C2 = { P } Args.procsx{Q}) —
(Vn,ClE,C2).

B.2.4. Syntactic Hoare triples

Reserved Notation"CH{P}c{Q}" (at level 89).
Reserved Notation "C1F C2" (at level 89).

Inductive syn_ext_triple : context — Assertion — com — Assertion — Prop :=
| SSkip: VCP,CH{P}CSkip{P}
| SAsgn:VCPVa,CH{assn.subPVa}V:i=a{P}

|SSeq:VCclc2PQR,CH{Q}c2{R}
—CH{P}c1{Q}
—CH{P}cl;c2{R}
|SIf : VCclc2PQb,CH{fun (z:Args.ZType) st = andb (P z st) (bassnbzst) }c1{Q}
— Ck { fun (z:Args.ZType) st = andb (P zst) (— (bassn b zst)) }c2{Q}
—CH{P}Cifbclc2{Q}
| SWhile: VCcPbz CH{funzst=PzstAeeval boolstb}c{P}
— CH{ P} while b inv (fun st = Pz st) do c end
{funzst=PzstA - (eeval_boolstb)}
|SConsq: VCPP cQQ,CH{P'}c{Q’}
— (Vstst/,
(V (z:Args.ZType), P’ z st = true — check_post Q’ z st’)
— (V (z:Args.ZType), P z st = true — check_post Q z st'))
—CH{P}c{Q}
| SConsgPre: VCPP' cQ,CH{P }c{Q}
—P—P)
—CH{P}c{Q}
| SConsqPost: VCPcQQ/,CH{P}c{Q'}
— (@ —Q)
—CH{P}c{Q}

B.2. HOARE.V 91

| SCallSimp : VP xQC, ((P, call x,Q) :: C) - { P } Args.procs x { Q }
—CH{P}callx{Q}
| SBackup: YV CPcxQ,
(Vst/,CH{funzst=PzstAbeqg_envst st}
c
{funzst= Qz (env_update st’x (stx)) })
— CH{P}backup xinc{Q}
| SPick : ¥ C P x xc,
CH{funzst=
forall_bool (fun v =-implb (v_mem v (st xc)) (assn_sub P x (EValue v) z st))

x := pick xc

{P}
|SCtx: VCPcQ,In(PcQ)C
—CH{P}c{Q}

where "CH{P}c{Q}":=(syn_ext_triple CP c Q)
with syn_judgement: context — context — Prop :=

| scall : ¥ €1 C2,
(VPcQ, In(P,cQ)C2— dx c=callx)
— (V (P Q: Assertion) x, In (P,CALL x,Q) C2 — C1 ++ C2 - { P } Args.procs x{ Q })
—ClkC2
| STriple : V C1 C2,
(VPcQ In(PcQ)C2—=ClH{P}c{Q})
—ClkC2

where "C1F C2" := (syn_judgement C1 C2).

Lemma hoare_soundness_n:VCPcQ,
CH{P}c{Q}—
Vn CEL{P}c{Q}

Theorem hoare_soundness: VCP cQ,
CH{P}c{Q}—
Ce{P}c{Q}.

Lemma hoare_jsoundness_n: V C1 C2,
Cl1-C2 —
Vn,ClE,C2

Theorem hoare_jsoundness : V C1 C2,
ClFC2—Cl[C2.

End HoareM.

B.3. SUBSTSTATE.V 92

B.3. SubstState.v

Require Import Imp.

Require Import BigStepSemantics.
Require Import Purity.

Require Export Sets.

Require Export Calculus.

Lemma R_subst_exp: Ve3vxsaals0ala2,
syn_beq_res
(LBind (R e3 (env_update (env_update a s al) s0 a2))
(funz: Value =
R e3 (env_update (env_update a s a0) s0 z)))
(LBind (R e3 (env_update (env_update a s a0) s0 a2))
(funz: Value =
R e3 (env_update (env_update a s al) s0 z))) = true
%
syn_beq_res
(LBind (R (subst_exp e3 v x) (env_update (env_update a s al) sO a2))
(funz: Value =
R (subst_exp e3 v x) (env_update (env_update a s a0) s0 z)))
(LBind (R (subst_exp e3 v x) (env_update (env_update a s a0) s0 a2))
(funz: Value =
R (subst_exp e3 v x) (env_update (env_update a s al) sO z))) = true.

Lemma pure_subst_exp: Vsve,
is_pure e = is_pure (subst_exp e s v).

Theorem beq_str_false : V (s s’ : string),
beqg_strss’' =false — s #¢/.

Lemma list_remove_ignore: Vlbs,
Inbl—
b#s—
In b (List.remove eq_str_dec s (1)).

Lemma rem_intro: Vxas,
XF£Ss—
In x (List.remove eq_str_decs (a)) —
Inxa.

Lemma rem_remove: Vxas,
Inxa—
SFEX—
In x (List.remove eq_str_dec s a).

B.3. SUBSTSTATE.V 93

B.3.1. Simultaneous substitution

Fixpoint subst_state_avoid e (st:Env) avoid :=
matchewith
| Var x0 = if set_mem x0 avoid then Var x0 else Value (st x0)
| Value g = Value g
| UnOp o el = UnOp o (subst_state_avoid el st avoid)
| BinOp o el e2 = BinOp o (subst_state_avoid el st avoid) (subst_state_avoid e2 st avoid)
| If el e2 e3 = If (subst_state_avoid el st avoid) (subst_state_avoid e2 st avoid)
(subst_state_avoid e3 st avoid)
|Letyele2 =
Let y (subst_state_avoid el st avoid) (subst_state_avoid e2 st (set_add y avoid))
| In e1 T = In (subst_state_avoid el st avoid) (subst_state_t_avoid T st avoid)
| Entity les =
Entity (List.map (funle =
matchlewith
| (li,ei) = (li, subst_state_avoid ei st avoid)
end) les)
| Dot el | = Dot (subst_state_avoid el st avoid) |
| Add el e2 = Add (subst_state_avoid el st avoid) (subst_state_avoid e2 st avoid)
| Accylely2e2e3 =
Acc y1 (subst_state_avoid el st avoid) y2 (subst_state_avoid e2 st avoid)
(subst_state_avoid e3 st (set_add y1 (set_add y2 avoid)))
| App fe =
App f (subst_state_avoid e st avoid)
end
with
subst_state_t_avoid (U : MType) (st:Env) avoid : MType :=
match Uwith
| Coll T = Coll (subst_state_t_avoid T st avoid)
| Entity | T = Entity | (subst_state_t_avoid T st avoid)
| Refiney Te =
Refine y (subst_state_t_avoid T st avoid) (subst_state_avoid e st (set_add y avoid))
|_=U
end.

Definition subst_state e st := subst_state_avoid e st set_empty.
Definition subst_state_t e st := subst_state_t_avoid e st set_empty.

Lemma fv_subst : V €’ st avoid, incl (fv_exp (subst_state_avoid e’ st avoid)) avoid
with fv_subst_t: V' t’ st avoid, incl (fv_type (subst_state_t_avoid t’ st avoid)) avoid.

Lemma impure_subst: Ve v x,
contains_impure_refinements (e) = false —
contains_impure_refinements (subst_exp e v x) = false

B.3. SUBSTSTATE.V

94

with impure_subst_t: Vtvx,
contains_impure_expressions t = false —
contains_impure_expressions (subst_type t v x) = false
withimpure_subst_p:Vevx,
is_pure e = true —
is_pure (subst_exp e v x) = true.

Lemma fv_subst’ : V (e:Exp) €’ st,
e = subst_state_avoid e’ st set_empty —
fv_exp e = nil.

Lemma subst_state_ignore: Ve’ eavstav,
e = subst_state_avoid e’ st av —
—Ina (fv_exp €') V set_mem a av = true —
e = subst_state_avoid e’ (env_update st a v) av.

Lemma subst_state_trans_subst’ : Ve’ vs’ st av,
set_mem s’ av = false —
subst_exp (subst_state_avoid e’ st (set_add s’ av)) v s’
= subst_state_avoid e’ (env_update sts’ v) av.

Lemma subst_state_trans_subst: Ve’ evsstav,
set_mem s av = false —
e = subst_state_avoid e’ st (set_add s av) —

subst_exp e v s = subst_state_avoid e’ (env_update st s v) av.

Lemma app_eq_single A: V1112 (s:A),
1 ++12=5s:nil —
(11 =nil V11 = s:nil) A (12 = nil V 12 = s::nil).
Lemma subst_state_eq_subst: Ve vsstay,
set_mem s av = false —
fv_exp e = nil Vv fv_exp e = (s::nil) —
subst_exp e v s = subst_state_avoid e (env_update st s v) av.

Lemma Pure_subst_state : V e st av,
Pure e
Pure (subst_state_avoid e st av).

Lemma pure_subst_state : V e st av,
is_pure e = is_pure (subst_state_avoid e st av).

Lemma subst_swap : Ve vl s stay,
subst_state_avoid (subst_exp e vls) stav=
subst_exp (subst_state_avoid e st (set_add s av)) v1s.

Lemma subst_state_closed : V e st av,
fv_exp e = nil —
subst_state_avoid e st av = e.

Lemma L30': Verst,

B.4. TRANSLATE.V

95

Pure (subst_state_avoid e st set_empty) —
Eval (subst_state_avoid e st set_empty) r —
Rest=r.

Lemma EIn_logical : VTev,
Eval (IneT) (Returnv) —
In_Logical v = true.

Lemma F_env_ignore: V Tv env a vx,
= Ina (fv_type T) —
FTv (env_update envavx) =FTvenv.

Lemma R_env_ignore : V e env a vx,
—Ina(fv_expe) —
R e (env_update envavx) =R e env.

Lemma alg_purity_sound : Ve,
is_pure e = true — Pure e.

B.3.2. Relating operational and logical semantics.

Lemmaeval_F: Vb Txst,
contains_impure_expressions (subst_state_t T st) = false —
Eval (In (Value x) (subst_state_t T st)) (Return (v_logical b)) —
FTxst=h.

Lemma eval_ W : VT x st,
contains_impure_expressions (subst_state_t T st) = false —
Eval (In (Value x) (subst_state_t T st)) (Error) —
W T x st = true.

Lemma eval_W_false : VT x stv,
contains_impure_expressions (subst_state_t T st) = false —
Eval (In (Value x) (subst_state_t T st)) (Return v) —
W T x st = false.

B.4. Translate.v

Require Export Hoare.

Require Export DeclarativeTypeSystem.
Require Export VCgen.

Require Export BigStepSemantics.
Require Export Coq.Program.Wf.

B.4. TRANSLATE.V

96

Require Export Purity.
Require Export SubstState.
Require Export Coq.Logic.FunctionalExtensionality.

Fixpoint binders (e:Exp) {struct e} :=
matchewith
| UnOp o e = binders e
| BinOp o el e2 = binders el ++ (binders e2)
| If c t e = binders c ++ (binders t) ++ (binders €)
| Let v e e2 = v :: binders e ++ binders e2
| In e m = binders e
| Entity les =
(fix bi_entity les :=
match leswith
| nil = nil
| (L e) :: les’ = binders e ++ (bi_entity les’)
end) les
| Dot e s = binders e
| Add el e2 = binders el ++ (binders e2)
| Accvese2e3=-v:s: binders e ++ binders e2 ++ binders e2
| App s e = binders e
| _= nil
end.

Program Definition unique (e:Exp): {e:Exp | NoDup (binders e ++ fv_exp e)} :=e.

Definition translateT (t:MType) (x:string) : Imp.Assertion :=
funenv=Ft(envx)env.

Definition translateT_err (t:MType) (x:string) : Imp.Assertion :=
fun env = — (Wt (envx) env).

Fixpoint translate avoid e outvar {struct e} :=
let avoid_o := outvar :: avoid in
let avoid := outvar :: fv_exp e ++ avoid in
backup outvar in
match ewith
| Var x = CAss outvar (EVar x)
| Value v = CAss outvar (EValue v)
|UnOpoe=
let €’ := projl_sig (fresh (avoid)) in
translate (e’::avoid) e €’;
(assert (translateT (fst (op_type_un 0)) €'));
match owith
| ONot = CAss outvar (ENot (EVar €'))
end
| BinOpoele2 =

B.4. TRANSLATE.V

let el’ := projl_sig (fresh (avoid)) in
let e2’ := projl_sig (fresh (el’::avoid)) in
translate (e1’::e2'::avoid) el el/;
translate (el’::e2'::avoid) e2 e2’;
(assert (translateT (fst3 (op_type_bi 0)) e1));
(assert (translateT (snd3 (op_type_bi 0)) e2'));
match owith
| OEq = CAss outvar (EEq (EVar el’) (EVar e2))
| OLt = CAss outvar (ELt (EVar e1’) (EVar e2'))
| OGt = CAss outvar (EGt (EVar el) (EVar e2))
| OAnd = CAss outvar (EAnd (EVar el’) (EVar e2'))
| OOr = CAss outvar (EOr (EVar el’) (EVar e2))
| OPlus = CAss outvar (EPlus (EVar el’) (EVar e2'))
| OMinus = CAss outvar (EMinus (EVar el’) (EVar e2"))
| OTimes = CAss outvar (ETimes (EVar el’) (EVar e2'))
end
|Ifele2e3 =
let el’ := projl_sig (fresh (avoid)) in
translate (e1’::avoid) el el’;
CAssert (translateT Logical e1’);
if e1’ then translate (e1’::avoid) e2 outvar
else translate (e1’::avoid) e3 outvar
| Let x el e2 = translate avoid el x; translate avoid e2 outvar
|Inet=
let e’ := projl_sig (fresh (avoid)) in
translate (e’::avoid) e €’;
(assert (translateT_err t €));
outvar := Eln (translateT t e’)
| Entity el =
let ent’ := proj1_sig(fresh (avoid)) in
let temp’ := projl_sig (fresh (ent’::avoid)) in
ent’ := EValue v_eempty;
(fix les_to_entity el :=
matchelwith
| nil = skip
[(l,e):el =
(translate (ent’::temp'::fv_exp e ++ avoid_o) e temp’;
ent’ := EEntUpd | (EVar temp’) (EVar ent’);
les_to_entity el’)
end) el;
outvar := EVar ent’
| Dote |l =
let e’ := projl_sig (fresh (avoid)) in
(translate (e’::avoid) e €’; assert (translateT (Entity | Any)) €');

B.4. TRANSLATE.V

98

CAss outvar (EDot (EVar €') 1)
|Add el e2 =
let el’ := projl_sig (fresh (avoid)) in
let e2’ := projl_sig (fresh (el’::avoid)) in
translate (el’::e2"::avoid) el el’; translate (el’::e2'::avoid) e2 e2’;
(assert (translateT (Coll Any)) e2');
CAss outvar (ECollAdd (EVar e2) (EVar el))
| Accxelye2e3 =
let el := projl_sig (fresh (x:y:avoid)) in
translate (x::y::el'::avoid) el el’;
(assert (translateT (Coll Any)) el);
translate (x::y::el'::avoid) e2 y;
while (ENot (ECollEmpty (EVar e1’))) do
CPick x e1’;
el’ := ECollIRem (EVar el’) (EVar x);
translate (x::y::el'::avoid) e3 y

end;
outvar := (EVary)
| App fe =
translate (call_arg::avoid) e call_arg;
(call f);

outvar := EVar call_ret
end.

Module Type TranslateArgs.
Parameter ZType: Type.
Parameter ZType_inhabited : ZType.

End TranslateArgs.

Module TranslateM (Args : TranslateArgs).

Module HoareArgs.
Definition procss:=
let (arg,ex) :=functions s in
arg := EVar call_arg; translate nil ex call_ret.
Definition ZType := Args.ZType.
Definition ZType_inhabited := Args.ZType_inhabited.
End HoareArgs.

Module VCgenSpecificArgs := VCgenM HoareArgs.
Export VCgenSpecificArgs.

B.4.1. Lemmas for the soundness proof

Lemma un_op_logical : VvV,

B.4. TRANSLATE.V

un_op_eval ONot v V' — In_Logical v = true.

Lemma un_op_ONot: VvV,
un_op_eval ONot vV — v/ = O_Not v.

Lemma un_op_not_logical : Vv,
- (3V': Value, un_op_eval ONot v v') — In_Logical v = false.

Lemma fresh_is_fresh : V (a:string) b avoid,
= Inb (a:: avoid) —
b #a.

Lemma fresh_is_fresh_beq : V a b avoid,
=Inb (a:: avoid) —
beq_str b a = false.

Lemma fresh_is_fresh2 : V (a:string) b ¢ avoid,
= Inb (c:a:: avoid) —
b #£a.
Lemma fresh_is_fresh2_beq : V a b c avoid,
= Inb (c:a:: avoid) —
beq_str b a = false.

Lemma backup_ret : V rest st st’ outx v,
rest / st ~ CReturn st’ —
st outx =v —
(backup outx in rest) / st ~~ CReturn (env_update st outx v).

Lemma backup_err : V rest st outx,
(backup outx in rest) / st ~» CError <
rest / st ~» CError.

Lemma lookup_equiv : V st st’ outx s,
(outx := EValue (st's)) / st ~ CReturn st’ <+
(outx := EVars) / st ~ CReturn st'.

Lemma forall_holds : V¥ v2,
forall_bool (fun v : Value = implb (v_mem v v2) true) = true.

Lemma coll_not_empty : Vv vl,
v_memv vl =true —
O_Not (v_empty v1l) = v_tt.

Lemma coll_has_member: V v1,
is_Cvl =true —
v_empty vl =v_ff —
dv,v_memv vl = true.

Lemma not_in : V a (x:string) avoid,
= Ina(x:: avoid) — beq_str a x = false.

Lemma fresh_not_avoid : V x avoid,

B.4. TRANSLATE.V 100

In x avoid —
(projl_sig (fresh avoid)) # x.

Lemma vars_not_changed : V e x avoid outx st st/,
translate (avoid) e outx / st ~ CReturn st’ —
outx # x —
stx =st’ x.

Lemma state_unchanged : V e avoid outx st st/,
translate (avoid) e outx / st ~ CReturn st’ —
st’ = env_update st outx (st’ outx).

Lemma uneq_update : Vst st’ a,
(Vx, a<>x — stx=st' x) —
st = env_update st’ a (st a).

Lemma subst_state_trans’ : V e2 a st st/,
(Vx, a<>x — stx=st' x) —
—Ina (fv_exp e2) —
subst_state_avoid e2 st set_empty = subst_state_avoid e2 st’ set_empty.

Lemma subst_state_trans’2 : V e2’ a b st st/,
(Vx, a<>x — b<>x — stx =st' x) —
—1Ina (fv_expe2’) —
= Inb (fv_exp e2’) —
subst_state_avoid e2’ st set_empty = subst_state_avoid e2’ st’ set_empty.

Lemma subst_state_trans : V e2 e2’ e a avoid st st’,
translate avoid e a / st ~» CReturn st’ —
= Ina (fv_exp e2') —
(e2 = subst_state_avoid e2’ st set_empty <+ €2 = subst_state_avoid e2’ st’ set_empty).

Lemma subst_state_trans_t: Vtt’ e a avoid st st/,
translate avoid e a / st ~» CReturn st’ —
= Ina (fv_typet) —
(t = subst_state_t_avoid t’ st set_empty <> t = subst_state_t_avoid t’ st’ set_empty).

Tactic Notation "prepare" hyp(Himp) hyp(IHEval) constr(outx1) constr(st1) constr(avoidl)
constr(e) "as" ident(out) :=

let fl:=fresh"IH" out"1" in

let fir:=fresh "IH" out "1r" in

let f2:=fresh"IH" out "2" in

let f2r:= fresh "IH" out "2r" in

let f2/ ;= fresh "IH" out "2" in

let st’:= fresh "st" out in

((destruct IHEval with (outx:=outx1) (st:=st1) (avoid:=avoid1) (ex0:=e) as [f1 f2r]; try
(apply Himp));

try assumption;

try (specialize (f1 (refl_equal _)));

B.4. TRANSLATE.V 101

try (edestruct f2r as [st’ [f2 f2']]; [eassumption |]); try (edestruct f2r as [st’ [f2 f2'] ; [
reflexivity |])).

Tactic Notation "prepare_err" hyp(Himp) hyp(IHEval) constr(outx1) constr(st1) constr(avoidl)
constr(e) "as" ident(out) :=

rewrite backup_err;

prepare Himp IHEval outx1 st1 avoidl e as out.

Tactic Notation "prep_ret":=
eexists; split; try (eapply backup_ret).

Tactic Notation "prepare_ret" hyp(Himp) hyp(IHEval) constr(outx1) constr(st1) constr(avoidl)
constr(e) "as" ident(out) :=

prepare Himp IHEval outx1 st1 avoidl e as out;

prep_ret.

Ltac remembertaca x a :=
let tx:=fresh"t"xin
let px:=fresh "P"x in
let x:=freshxin
let H:=fresh "Heq" x in
(set (tx:=projl_sig(a)) in x; assert (H: tx=proj1_sig(a)) by reflexivity;
clearbody tx; simpl in H; rewrite < Hin Xx;
destruct (a) as [x px]; simpl in H; rewrite H in x; clear H; clear tx).

Tactic Notation "remember_adv" constr(c) "as" ident(x) := remembertaca x c.

Tactic Notation "resolve_subst" hyp(n) :=
rewrite < subst_state_trans; [eassumption | eassumption | In_contra n].

Ltac W_res1 Himp Hsubst Hsubstt Pa Hrew :=
unfold translateT_err; rewrite neghb_rome; first [apply eval_W | eapply eval_W_false |;
unfold subst_state_t;
[simpl; rewrite subst_state_trans_t in Hsubst;
[rewrite < Hsubst; try apply Himp | try eassumption | unfold fv_type in Pa; In_contra
Pa] |
rewrite subst_state_trans_t in Hsubstt; [rewrite < Hsubstt; rewrite Hrew | try
eassumption | In_contra Pa |
]-
Tactic Notation "W_resolve" hyp(Himp) hyp(Hsubst) hyp(Hsubstt) hyp(Pa) hyp(Hrew)

first [apply CESeqErr; apply CEAssertErr; W_res1 Himp Hsubst Hsubstt Pa Hrew
| eapply CESeq; [apply CEAssert; W_res1 Himp Hsubst Hsubstt Pa Hrew |]].

Lemma lookup : V outx v st,
env_update st outx v outx = v.

End TranslateM.

B.5. SOUNDNESS.V

102

B.5. Soundness.v

Require Import Translate.

Module SoundnessM (Args : TranslateArgs).
Module TranslateSpecificArgs := TranslateM Args.
Export TranslateSpecificArgs.

B.5.1. Additional lemmas for the entity case

Definition v_eremove (l:string) (e:Value) : Value.
Admitted.
Lemma rem_add : Vv,
v dotlx=v—
v_eupdate | v (v_eremove | x) = x.
Lemma v_has_field_rem : V Ii 11’ vx,
v_has_field li (v_eremove |11’ vx) = true —
v_has_field li vx = true.
Lemma v_dot_rem: Vi1l vx v,
v_dot li (v_eremove 11’ vx) = v —
v_dotlivx =v.
Lemma v_has_field_ign : V' li 11’ vx,
li £ 11 —
v_has_field li vx = true —
v_has_field li (v_eremove 11’ vx) = true.
Lemma v_dot_ign: V Ii I1’ vx v,
li£11 —
v_dotlivk=v —
v_dot li (v_eremove 11’ vx) = v.
Lemma v_has_field_false : V li vx,
v_has_field li (v_eremove li vx) = false.
Lemma v_eremove_E : V 11 vx,
is_E (v_eremove |1’ vx) = true.

Lemma les_entity_app: V111’ e1’ a b outx avoid st” v,
((fix les_to_entity (les : list (string x Exp)) : com :=
match leswith
| nil = skip
| pairl0e:: les’ =

translate (a:: b :: fv_exp e ++ outx :: avoid) e b;
a := EEntUpd 10 (EVar b) (EVar a); les_to_entity les’

end) I;

translate (a :: b :: fv_exp el’ ++ outx :: avoid) el’ b;

B.5. SOUNDNESS.V 103

a:= EEntUpd |1’ (EVar b) (EVar a))
/ st” ~~ CReturn v
N
(fix les_to_entity (les : list (string x Exp)) : com :=
match leswith
| nil = skip
| pairl0e:: les' =
translate (a:: b :: fv_exp e ++ outx :: avoid) e b;
a := EEntUpd 10 (EVar b) (EVar a); les_to_entity les’
end) (I ++ (17, e1’) : nil) / st” ~~ CReturn v.

Lemma fv_entity_app: V111’ e/,

(fix fv_entity (les : list (string x Exp)) : list string :=
match leswith
| nil = nil
| pair _e:: les’ = fv_exp e ++ fv_entity les’
end) (1 ++ (17, e1’) :: nil) =

(fix fv_entity (les : list (string x Exp)) : list string :=
match leswith
| nil = nil
| pair _e :: les’ = fv_exp e ++ fv_entity les’
end) | ++ fv_exp el’.

Lemma cir_entity_app : V | 11’ el’ st,
(fix cir_entity (les : list (string x Exp)) : bool :=
match leswith
| nil = false
| pair _e :: les’ =
contains_impure_refinements e || cir_entity les’
end)
(map
(funle: string x Exp =
let (li, ei) :=le in (li, subst_state_avoid ei st set_empty))
(I ++ (11/, 1) :: nil)) = false
N
(fix cir_entity (les : list (string x Exp)) : bool :=
match leswith
| nil = false
| pair _e :: les’ =
contains_impure_refinements e || cir_entity les’
end)
(map
(funle: string x Exp =
let (li, ei) :=le in (li, subst_state_avoid ei st set_empty))
) = false A contains_impure_refinements (subst_state_avoid el’ st set_empty) =

B.5. SOUNDNESS.V

104

false.

Lemma In_swap A: V1112 (x:A),
Inx (11 ++12) <> Inx (12 ++11).

Definition nil_list_str: list string := nil.

B.5.2. Additional lemmas for the accumulate case

Lemma let_seq_imp : V e3,
contains_impure_refinements e3 = false —
V vs y x, contains_impure_refinements

(let_seq y (map (fun v : Value = subst_exp e3 v x) vs) (Var y)) = false.

Lemma translate_avoid : V avl av2 st rout e,
translate avl eout /st ~>r —
List.incl avl av2 —
translate av2 e out / st ~>r.

Lemma translate_update : V av e out st st’ x v,
translate av e out / st ~~ CReturn st’ —
X # out —
= Inx (fv_expe) —

translate av e out / env_update st x v ~~ CReturn (env_update st’ x v).

Lemma translate_update_rem : ¥ av e out st st’ x v,
translate av e out / st ~» CReturn st’ —
= Inx (fv_expe) —
translate av e out / env_update st x v ~» CReturn st’.
Lemma translate_update_add : V av e out st st’ x v,
translate av e out / env_update st x v ~» CReturn st’ —
= Inx (fv_expe) —
translate av e out / st ~~ CReturn st’.
Lemma translate_update_err: Vave outstxyv,
translate av e out / st ~~ CError —
X # out —
= Inx (fv_expe) —
translate av e out / env_update st x v ~» CError.
Lemma translate_upd_subst : V av e out st st’ x v,
translate av (subst_exp e v x) out / st ~ st’ <+
translate av e out / (env_update st x v) ~ st’.

Lemma let_seq_subst : Vye'2 e’3 x vs st,
Lety (subst_state_avoid e’2 st set_empty)
(let_seqy
(map
(funv: Value =

B.5. SOUNDNESS.V 105

subst_exp (subst_state_avoid e’3 st (set_add x (set_add y set_empty))) v x)
vs) (Vary)) =
subst_state_avoid
(Letye'2
(let_seq y (map (fun v : Value = subst_exp '3 v x) vs) (Vary)))
st set_empty.

Lemma v_mem_remove : V xy c,
v_mem x (v_removey c) = true —
v_mem X c = true.

Lemma unroll_loop : Vst st’ bvl axy e avoid,
X#b—
y#b—
=Inb (fv_expe) —
is_Cvl =true —
v_mem avl =true —
stb=vl —
(b := ECollRem (EVar b) (EValue a);
(while ENot (ECollEmpty (EVar b)) inv fun _: Env = true
do (x := pick b);
b := ECollIRem (EVar b) (EVar x);
translate (avoid) e y end);
x := EValue a;
translate (avoid) ey) / st ~~
CReturn st/
N
(while ENot (ECollEmpty (EVar b)) inv fun _: Env = true
do (x := pick b);
b := ECollRem (EVar b) (EVar x);
translate (avoid) ey end) / st ~~
CReturn st'.

Lemma translate_let_seq_inv : V vs avoid y e’3 x st st’ a,
List.incl (x :: y :: List.remove eq_str_dec x (List.remove eq_str_dec y (fv_exp e'3))) avoid
s
translate
avoid
(fold_right (funee’: Exp = Lety e e’)
(Lety (subst_exp e’3 ax) (Vary))
(map (funv: Value = subst_exp €3 vx) vs))y / st ~
CReturn st’ —
(translate
avoid
(fold_right (fune e’ : Exp = Letye ¢e’)
(Vary)

B.5. SOUNDNESS.V 106

(map (funv: Value = subst_exp '3 vx) vs)) y;
translate avoid (subst_exp '3 ax)y) / st ~
CReturn st'.

Lemma Permutation_accum A : V vs (a:A) vl,
Permutation (vs ++a:: nil) vl —
Permutation (a :: vs) vl.

Theorem translation_sound : V ex r outx avoid st,
(V s arg exp, (arg,exp) = functions s —
contains_impure_refinements exp = false) —
(V s arg exp, (arg,exp) = functions s —
fv_exp exp = nil V fv_exp exp = (arg::nil)) —
Eval (subst_state exst) r —
contains_impure_refinements (subst_state ex st) = false —
(r = Error — (translate avoid ex outx) / st ~» CError)
A
(Vv, r=(Returnv) —
I st/, (translate avoid ex outx) / st ~ CReturn st’ A st’ outx = v).

B.5.3. Closedness of the expression in the proof

Corollary translation_closed_sound : V ex r outx avoid st,

fv_exp ex = nil —

(V s arg exp, (arg,exp) = functions s —
contains_impure_refinements exp = false) —

(V s arg exp, (arg,exp) = functions s —
fv_exp exp = nil V fv_exp exp = (arg::nil)) —

Evalexr —

contains_impure_refinements ex = false —

(r = Error — (translate avoid ex outx) / st ~» CError)

A
(Vv, r=(Returnv) —
I st/, (translate avoid ex outx) / st ~ CReturn st’ A st’ outx = v).

B.5.4. Relation with Hoare logics

Lemma eval_subst_state : V ex st av,
Eval ex Error —
Eval (subst_state_avoid ex st av) Error.

Corollary soundness_hoare_plus_translation : V avoid ex outx P Q,
fv_exp ex = nil —

B.5. SOUNDNESS.V

107

(Vs arg exp, (arg,exp) = functions s —
contains_impure_refinements exp = false) —
(V s arg exp, (arg,exp) = functions s —
fv_exp exp = nil V fv_exp exp = (arg::nil)) —
contains_impure_refinements (ex) = false —
nil = { P } translate avoid exoutx { Q } —
valid_formula P —
- Eval ex Error.

B.5.5. Relation with verification condition generation

Corollary soundness_vcgen_plus_translation : V avoid ex outx Q C,

fv_exp ex = nil —

(V s arg exp, (arg,exp) = functions s —
contains_impure_refinements exp = false) —

(Vs arg exp, (arg,exp) = functions s —
fv_exp exp = nil V fv_exp exp = (arg::nil)) —

contains_impure_refinements (ex) = false —

valid (VCgen_procs C) —

valid_formula (VCgen C (translate avoid ex outx) Q) —

- Eval ex Error.

B.5.6. Relation to the type system

n_n

Definitionx:="x".
Definitionincom_sample :=

In (Value (v_int 5)) (Refine x Any (BinOp OGt (Var x) (Value (v_int 5)))).

Lemma incom_sample_type : = envT_empty - incom_sample : Logical.

Lemma incom_translated_no_error :
{fun (_: HoareArgs.ZType) (_: Env) = true }
translate (nil ++ dom envT_empty) incom_sample "outx"
{ fun (_: HoareArgs.ZType) (st : Env) = translateT Logical "outx" st }.

Lemma counterexample : — (V e env outx T avoid,
fv_exp e = nil —
envi-T—
= In outx (dom env) —
nil = { fun __=-true } translate (app avoid (dom env)) e outx
{ fun _st = translateT T outx st } —
envie: T).

End SoundnessM.

C. Complete axiomatisation

This appendix shows the complete axiomatisation we wrote for our implementation (see
Section 5.4).

[1171777177777777777777777777777777/7777/7
// General

L1171 00777 7777707777777 777770777777777
type String;
type General;

// Constructos

function G_Integer(int) returns (General);
function G_Text(String) returns (General);
function G_Logical(bool) returns (General);
const G_Null : General,;

// Tags

type GTag;

const unique GTag_Integer : GTag;
const unique GTag_Text : GTag;
const unique GTag_lLogical : GTag;
const unique GTag_Null : GTag;

function get_GTag(General) returns (GTag);

axiom (forall i : int :: { get_GTag(G_Integer(i)) }
get _GTag(G_Integer(i)) == GTag_Integer);

axiom (forall s : String :: { get_GTag(G_Text(s))}
get GTag(G_Text(s)) == GTag_Text);

axiom (forall b : bool :: { get_GTag(G_Logical(b)) }
get GTag(G_Logical(b)) == GTag_Logical);

axiom (get_GTag(G_Null) == GTag_Null);

// Testers

function is_Integer(g : General) returns (bool) { get_GTag(g)
GTag_Integer}

function is_Text(g : General) returns (bool) { get_GTag(g) ==
GTag_Text}

function is_Logical(g : General) returns (bool) { get GTag(g)
GTag_Logical}

108

109

function is_Null(g : General) returns (bool) { get GTag(g) ==
GTag_Null}

// Accessors
function of_G_Integer(General) returns (int);

axiom (forall i : int :: of_G_Integer(G_Integer(i)) == 1i);
function of_G_Text(General) returns (String);
axiom (forall s : String :: of_G_Text(G_Text(s)) == s);

function of_G_Logical(General) returns(bool);
axiom (forall b : bool :: of_G_Logical(G_Logical(b)) == b);

[1171777177777777777777777777777777/7777/7
// Value

[1T17117777 777777 777777771777777771777777

type Value;
type VList;
type VOption;

// Constructors (values)

function G(General) returns (Value);
function E([String]VOption) returns (Value);
function C([Value]int) returns (Value);
function L(VList) returns (Value);

// Lists
const Nil : VList;
function Cons(Value,VList) returns (VList);

// Options used for enties
const NoValue : VOption;
function SomeValue(Value) returns (VOption);

// Tags

type ValueTag; // should be finite
const unique VTag_General : ValueTag;
const unique VTag_Entity : ValueTag;
const unique VTag_Coll : ValueTag;
const unique VTag_List : ValueTag;

type VListTag;

const unique VLTag _Nil : VListTag;

const unique VLTag_Cons : VListTag;

axiom (forall x:VListTag :: x==VLTag_Nil || x==VLTag_Cons);

type VOptionTag;
const unique VOTag_NoValue : VOptionTag;
const unique VOTag_SomeValue : VOptionTag;

110

function get_VTag(Value) returns (ValueTag);
axiom (forall g : General :: { get_VTag(G(g)) }
get VTag(G(g)) == VTag_General);
axiom (forall e : [String]VOption :: { get VTag(E(e))}
get VTag(E(e)) == VTag_Entity);
axiom (forall c : [Value]int :: { get_VTag(C(c)) }
get VTag(C(c)) == VTag_Coll);
axiom (forall 1 : VList :: { get_VTag(L(l)) }
get VTag(L(l)) == VTag_List);

// new axioms

axiom (forall 1l:VList :: (is_Cons(l) ==> (exists v:Value, 1l1:VList
==Cons(v,11))));

axiom (forall 1:VList :: (is_Nil(1l) ==> 1 == Nil));

function get VLTag(VList) returns (VListTag);

axiom (forall v : Value, c : VList :: { get_VLTag(Cons(v, c)) }
get VLTag(Cons(v, c)) == VLTag_Cons);

axiom (get VLTag(Nil) == VLTag_Nil);

function get_VOTag(VOption) returns (VOptionTag);
axiom (forall v : Value :: { get_VOTag(SomeValue(v)) }

get_VOTag(SomeValue(v)) == VOTag_SomeValue);
axiom (get_VOTag(NoValue) == VOTag_NoValue);
// Testers

function is_General(v : Value) returns (bool) { get_VTag(v) ==
VTag_General}

function is_Entity(v : Value) returns (bool) { get VTag(v) ==
VTag_Entity}

function is_Coll(v : Value) returns (bool) { get VTag(v) == VTag_Coll
&& Positive(of_V_Coll(v))}

function is_List(v : Value) returns (bool) { get VTag(v) == VTag_List
}

function is_Cons(v : VList) returns (bool) { get VLTag(v) ==
VLTag_Cons}

function is_Nil(v : VList) returns (bool) { get_VLTag(v) == VLTag_Nil
}

function is_NoValue(v : VOption) returns (bool) { get_VOTag(v) ==
VOTag_NoValue }

function is_SomeValue(v : VOption) returns (bool) { get_VOTag(v) ==
VOTag_SomeValue }

// Positiveness of collections (alternative - define a type nat)
// type nat; const Z : nat; function S(x:nat) returns (nat);

111

function Positive(a : [Value]int) returns (bool) {(forall v : Value

a[v] >= @)}

// Accessors

function of_V_General(Value) returns (General);

axiom (forall g : General :: of_V_General(G(g)) == g);

function of_V_Entity(Value) returns ([String]VOption);

axiom (forall e : [String]VOption :: {of_V_Entity(E(e))} of_V_Entity(
E(e)) == e);

function of_V_Coll(Value) returns([Value]int);

axiom (forall c : [Valuelint :: {of_V_Coll(C(c))} of_V_Coll(C(c)) ==
c);

function of_V_List(Value) returns(VList);

axiom (forall 1 : ViList :: {of_V_List(L(1l))} of V_List(L(l)) == 1);

function of_VL_Hd(VList) returns(Value);

axiom (forall 1 : VList, v : Value :: { of_VL_Hd(Cons(v,1l)) }
of VL Hd(Cons(v,1)) == v);

function of_VL_T1(VList) returns(VList);

axiom (forall 1 : VList, v : Value :: { of_VL _Tl(Cons(v,1l)) }
of_VL_T1(Cons(v,1l)) == 1);

function of_SomeValue(VOption) returns (Value);
axiom (forall v : Value :: {of_SomeValue(SomeValue(v))} of_SomeValue(
SomeValue(v)) == v);

[1771777777777777777777777/77/777777777777
// Entities

[1T17117777 7777777777 7777777777771777777

const Entity_Empty : [String]VOption;
axiom (forall s : String :: {Entity_Empty[s]} Entity_Empty[s] ==
NoValue);

function has_field(v:Value, s:String) returns (bool) { is_SomeValue(
of _V_Entity(v)[s]) }

function dot(v:Value, s:String) returns (Value);

axiom (forall v:Value, s:String :: { dot(v,s) }

is Entity(v) && has_field(v,s) ==> dot(v,s) ==
of_SomeValue(of_V_Entity(v)[s]));

procedure pdot(v:Value, s:String) returns (o:Value)
requires is_Entity(v);

requires has_field(v,s);

ensures o==dot(v,s);

{

112

o := dot(v,s);
}

[17717777777777777777777777777777777777
// Collections

[1T177177 7777717777777 7777777 7777777777

// This is extensionality

// axiom (forall a, b : [Value]int :: (forall v : Value :: a[v] == b[
v]) ==> a == b);

// Would be nice to have, but is expensive

// Ext helps us to prove: af[vl:=nl][v2:=n2] == a[v2:=n2][vl:=nl]

// and (forall a : [int]int, x : int :: a[x:=a[x]] == a)

function Coll IsEmpty(v:Value) returns (bool);
axiom (forall a:Value :: { Coll IskEmpty(a) } is_Coll(a) ==>

Coll IsEmpty(a) == (forall s:Value :: of_V_Coll(a)[s] == 0));
procedure xyz()
{
assert (forall c:Value:: Coll IsEmpty(c) ==> Coll Count(Coll Empty)
== v_Int(0));
}

const Coll Empty : Value;
axiom (is_Coll(Coll Empty) == true);
axiom (Coll IsEmpty(Coll Empty) == true);

function Coll_Pick(v:Value,element:Value) returns (out:Value) { C(
of V_Coll(v)[element:=of_V_Coll(v)[element]-1]) }

procedure pColl Pick(v:Value) returns (out:Value, element:Value)
requires is_Coll(v);
requires !Coll_IsEmpty(v);
ensures is_Coll(out);
ensures of_V_Coll(v)[element] > ©;
ensures out == Coll Pick(v,element);
{
var list:[Value]int;
list := of_V_Coll(v);
havoc element;
assume (list[element] > 0);
list[element] := list[element] - 1;
out := C(list);

function Coll _Add(cl:Value, c2:Value) returns (out:Value);

113

axiom (forall cl,c2:Value :: { Coll Add(cl,c2) } is Coll(cl) &&
is_Coll(c2) ==> (forall s:Value :: of_V_Coll(Coll_Add(cl,c2))[s]
== of_V_Coll(cl)[s]+of_V_Coll(c2)[s]));

axiom (forall cl,c2:Value :: { Coll Add(cl,c2) } is Coll(cl) &&
is_Coll(c2) ==> (is_Coll(Coll Add(c1l,c2))));

procedure pColl Add(cl:Value, c2:Value) returns (out:Value)
requires is_Coll(cl) && is_Coll(c2);
ensures is_Coll(out);
ensures out == Coll Add(cl,c2);
ensures Coll IsEmpty(cl) && Coll IsEmpty(c2) <==> Coll IsEmpty(out);
ensures (forall s:Value :: of_V_Coll(out)[s] == of_V_Coll(cl)[s]+
of_V_Coll(c2)[s]);
{
out:=Coll_Add(cl,c2);
}

function Coll Add _num(coll:Value, element:Value, number:int) returns
(out:Value);
axiom (forall coll:Value, element:Value, number:int :: {Coll_Add_num(
coll,element,number)}
is_Coll(coll) ==> Coll_Add_num(coll,element,number) == C(of_V_Coll(
coll)[element:=0f_V_Coll(coll)[element]+number]));

procedure pColl Add_num(coll:Value, element:Value, number:int)
returns (out:Value)
requires is_Coll(coll);
requires number >= 0;
ensures is_Coll(out);
ensures Coll Add_num(coll, element, number) == out;
{
var list:[Value]int;
list := of_V_Coll(coll);
list[element] := list[element] + number;
out := C(list);
}

function fColl Count(coll:Value) returns (out:int);
axiom (forall coll:Value :: { fColl Count(coll) } Coll IsEmpty(coll)
==> fColl Count(coll) == 0);
axiom (forall coll:Value :: { fColl _Count(coll) } (forall ele:Value,
num:int, colll:Value :: Coll_Add_num(colll,ele,num)==coll ==>
fColl Count(coll) == fColl Count(colll)+num));
axiom (forall coll:Value :: { fColl Count(coll) } (forall ele:Value,
colll:Value :: Coll Pick(colll,ele)==coll ==> fColl Count(coll)
== fColl Count(colll)-1));

114

axiom (forall coll:Value :: { fColl _Count(coll) } (forall colll,
coll2 :Value :: Coll_Add(colll,coll2)==coll ==> fColl_Count(coll)
== fColl Count(colll)+fColl Count(coll2)));

function Coll _Count(coll:Value) returns (out:Value);
axiom (forall coll:Value :: {Coll Count(coll)}
is_Coll(coll) ==> Coll_Count(coll) == v_Int(fColl Count(coll)));

axiom (forall c:Value :: 0_Or(0_EQ(Coll Count(c), v_Int(@)), O _GT(
Coll Count(c), v_Int(@))) == v_true);

axiom (forall c :Value :: (O_EQ(Coll _Count(c), v_Int(@)) == v_true
==> Coll IsEmpty(c) == true));

procedure pColl Count(coll:Value) returns (out:Value)
requires is_Coll(coll);
ensures Integer(out);
ensures out==Coll_Count(coll);
{
var c : int;
var co : Value;
var x : Value;

cC := 0;

co := coll;

while (!Coll IsEmpty(co))

invariant is_Coll(co);

invariant ¢ == fColl_Count(coll) - fColl _Count(co);

{
call co,x := pColl Pick(co);
cC :=¢C + 1;
}
out := v_Int(c);

}

function Coll Contains_bool(coll:Value,ele:Value) returns (bool) {
of V_Coll(coll)[ele]>=1}
function Coll_Contains(coll:Value,ele:Value) returns (Value);
axiom (forall coll:Value,ele:Value :: {Coll _Contains(coll,ele)}
is_Coll(coll) ==> Coll_Contains(coll,ele) == v_Logical(
Coll _Contains_bool(coll,ele)));

axiom (forall c:Value :: {Coll IsEmpty(c)} !Coll IsEmpty(c) ==> (
exists v:Value :: Coll Contains_bool(c, Vv)));

procedure pColl Contains(coll:Value,ele:Value) returns (out:Value)
requires is_Coll(coll);
ensures out == Coll Contains(coll,ele);

{

out := Coll_Contains(coll,ele);

115

}

function Coll Distinct(coll:Value) returns (out:Value);

axiom (forall c,c' : Value :: {Coll Distinct(c),is Coll(c')} c' ==

Coll Distinct(c) <==> is_Coll(c') && (forall ele:Value
of_V_Coll(c)[ele]>»=1,1,0)==0f_V_Coll(c')[ele]));

procedure pColl Distinct(coll:Value) returns (out:Value)
requires is_Coll(coll);
ensures is_Coll(out);
ensures out == Coll Distinct(coll);
{
out := Coll_Distinct(coll);

}

L1177 77 0007777007777 7070077 7771707777171777
// Lists

[17717170007777 7777707777777 77777777777777
type Closure = [Value, Value] Value;

const List_Empty : Value;
axiom (List_Empty == L(Nil));

ite(

function List Empty(list:Value) returns (bool) { is Nil(of_ V_List(

list)) }

axiom (forall x:Value :: x!=List_Empty ==> lList_Empty(x));

function List Contained _bool(element:Value,list:Value) returns (out:

bool)

{ ((List_Empty(list)) ==> false) && ((!List_Empty(list)) ==> (
of VL _Hd(of_V_List(list))==element || List_Contained_bool(element,

L(of_VL_Tl(of_V_List(1list)))))) }

function List_Contained(element:Value,list:Value) returns (out:Value)

{ v_Logical(List _Contained_bool(element,list)) }

function VList_Length(list:VList) returns (out:int);
axiom (VList_Length(Nil) == 0);

axiom (forall 1:VList, v:Value :: { VList_Length(Cons(v,1)) }

VList _Length(Cons(v,1)) == VList Length(l)+1);

function List_Length(list:Value) returns (out:Value);
axiom (forall list:Value :: {List_Length(list)}

is_List(list) ==> List_Length(list) == v_Int(VList_Length(of_V_List

(1ist))));

procedure pList_Length(list:Value) returns (out:Value)

116

requires is_List(list);
ensures Integer(out);
ensures out==List_Length(list);
{
var 1 : VList;
var 1 _old : VList;
var ¢ : int;
1 := of_V_List(list);

1 old ‘= I;
cC := 0;
while (!is_Nil(1l))
invariant is_Nil(l) || is_Cons(1l);
invariant ¢ == VList_Length(l_old)-VList_Length(1l);
{
1 := of VL _T1(1);
C := c+l;
}
out := v_Int(c);
}
function VList_Contains(ele:Value,list:VList) returns (out:bool);
axiom (forall v:Value :: {VList_Contains(v,Nil)} !(VList_Contains(v,
Nil)));
axiom (forall v:Value, vs:VList, u:Value :: {VList_Contains(u,Cons(v,

vs))} VList_Contains(u, Cons(v,vs)) <==> (u == v) &&
VList_Contains(u, vs));

function List Contains(list:Value,ele:Value) returns (out:Value);
axiom (forall ele:Value,list:Value :: {List_Contains(list,ele)}
is_List(list) ==> List_Contains(list,ele) == v_Logical (
VList_Contains(ele,of _V_List(list))));

procedure pList_Contains(list:Value,ele:Value) returns (out:Value)
requires is_List(list);
ensures Logical(out);

ensures out == List_Contains(list, ele);
{

out := List_Contains(list, ele);
}

function List_Cons(element:Value,list:Value) returns (out:Value);
axiom (forall element:Value,list:Value :: {List_Cons(element,list)}
is_List(list) ==> List_Cons(element,list) ==
L(Cons(element,of V_List(list))));

procedure pList_Cons(element:Value,list:Value) returns (out:Value)
requires is_List(list);

117

ensures is_List(out);

ensures out == List_Cons(element,list);

ensures V0List_Length(of_V_List(list)) + 1 == VList_Length(of_V_List(
out));

ensures (forall v:Value :: List_Contained_bool(v,list) ==>

List_Contained_bool(v,out));
ensures (List_Contained_bool(element,out));
ensures (forall v:Value :: List_Contained_bool(v,out) ==>
List Contained_bool(v,list) || v==element);
{
var 1 : VList;
1 := of_V_List(list);
out := L(Cons(element,l));
}

function List_Head(list:Value) returns (out:Value);

axiom (forall list:Value :: {List_Head(list)}
is_List(list) && !List_Empty(list) ==> List_Head(list)
of _VL_Hd(of_V_List(list)));

procedure pList Head(list:Value) returns (out:Value)
requires is_List(list);
requires !List_Empty(list);

ensures out == List_Head(list);
ensures (List_Contained _bool(out,list));
{

out:=List_Head(list);
}

function List Tail(list:Value) returns (out:Value);

axiom (forall list:Value :: {List_Tail(list)}
is_ List(list) && !List_Empty(list) ==> List_Tail(list) ==
L(of_VL _Tl(of_V_List(list))));

axiom (forall 1l:Value :: { List Tail(l) } VList_Length(of_V_List(1l))
-1 == VList_Length(of_V_List(List_Tail(1l))));

procedure pList_Tail(list:Value) returns (out:Value)
requires is_List(list);
requires !List Empty(list);

ensures out == List Tail(list);

ensures VList_Length(of_V_List(list)) - 1 == VList_Length(of_V_List(
out));

ensures (forall v:Value :: List_Contained_bool(v,out) ==>

List _Contained bool(v,list));
{

}

out:=List _Tail(list);

118

function VList Nth(list:VList,num:int) returns (out:Value);

axiom (forall 1:VList, v:Value :: { VList_Nth(Cons(v,1l),0) }
VList Nth(Cons(v,1),0) == v);

axiom (forall 1:VList, v:Value, n:int :: { VList _Nth(Cons(v,1l),n) }
n>@ ==> VList_Nth(Cons(v,1l),n)==VList Nth(l,n-1));

function List Nth(list:Value,num:Value) returns (out:Value);
axiom (forall list:Value,num:Value :: {List Nth(list,num)}
is List(list) && Integer(num) ==>
List Nth(list,num) == VList _Nth(of_V_List(list),of_G_Integer(
of_V_General(num))));

axiom (forall 1:Value, n:Value :: { List_Nth(1l,n) }
List_Contained_bool(List_Nth(1l,n),1));

procedure pList_Nth(list:Value,num:Value) returns (out:Value)
requires is_List(list);

requires Integer(num);

requires (of_G_Integer(of_V_General(num))>=0);

requires O_GT(List_Length(list),num)==v_true;

ensures out == List_Nth(list,num);
ensures List_Contained_bool(out,list);
{

out := List Nth(list,num);
}

function VList_Fold(list:VList, state:Value, cls:Closure) returns (
out:Value);

axiom (forall state:Value,cls:Closure :: { VList_Fold(Nil,state,cls)
} VList Fold(Nil,state,cls) == state);

axiom (forall lh:Value, lt:VList, state:Value, cls:Closure :: {
VList_Fold(Cons(lh,1t),state,cls)}

VList_Fold(Cons(lh,1t),state,cls) == VList_Fold(1lt,cls[state,1lh],
cls));

function List_Fold(list:Value, state:Value, cls:Closure) returns (out
:Value)
{ VList_Fold(of_V_List(list), state, cls) }

procedure pList Fold(list:Value, state:Value, cls:Closure) returns (

out:Value)
requires is_List(list);
ensures out == List_Fold(list, state, cls);
{
out := List Fold(list, state, cls);
}

function VList_Append(listl:VList,list2:VList) returns (out:VList);

119

axiom (forall list2:VList :: { VList_Append(Nil,list2) } VList_Append
(Nil,1list2) == list2);

axiom (forall listl,list2:VList :: { VList_Append(listl,list2) }
VList Append(listl, list2) == VList Append(of_VL _T1(listl),Cons(
of VL _Hd(list1),1list2)));

function List_Append(listl:Value,list2:Value) returns (out:Value);
axiom (forall listl,list2:Value :: {List_Append(listl,list2)}
is List(listl) && is List(list2) ==> List Append(listl,list2) ==
L(VList_Append(of_V_List(listl),of_V_List(list2))));

procedure pList_Append(listil:Value, list2:Value) returns (out:Value)
requires is_List(listl);
requires is_List(list2);
ensures is_List(out);
ensures VList_Length(of_V_List(out)) == VList _Length(of_V_List(list1l)
) + V0List_Length(of_V_List(list2));
ensures V0List_Append(of_V_List(listl),of_V_List(list2)) == of_V_List(
out);
ensures (forall v:Value :: List Contained _bool(v,listl) ==>
List_Contained_bool(v,out));
ensures (forall v:Value :: List_Contained_bool(v,list2) ==>
List_Contained_bool(v,out));
ensures (forall v:Value :: List_Contained_bool(v,out) ==>
List Contained _bool(v,list1l) || List_Contained bool(v,1list2));
{
var 11 : Value;
var 12 : Value;
var ele : Value;
12 := list2;
11 := listil;
while (!List_Empty(1l1))
invariant is_List(1l1);
invariant is_List(12);
invariant VList_Length(of_V_List(11)) + VList_Length(of_V_List(12
)) == VList _Length(of_V_List(listl)) + VList_Length(of_V_List(
list2));
invariant VList_Append(of_V_List(1l1l),o0f_V_List(1l2)) ==
VList_Append(of_V_List(listl),of_V_List(list2));
invariant (forall v:Value :: List_Contained_bool(v,listl) ==>
List Contained bool(v,11) || List _Contained_bool(v,12));
invariant (forall v:Value :: List_Contained_bool(v,list2) ==>
List_Contained_bool(v,12));
invariant (forall v:Value :: List_Contained_bool(v,11) ==>
List_Contained_bool(v,listl));
invariant (forall v:Value :: List_Contained_bool(v,12) ==>
List Contained bool(v,listl) || List_Contained bool(v,list2));

call ele := pList_Head(1l1);

120

assert (List_Contained_bool(ele,listl));
call 11 := plList_Tail(l1);
call 12 := pList_Cons(ele,12);
}
out := 12;
}

[177771777777777777777777777777777777777
// If then else

[177117000 7707777777777 777777777771717717177
function ite<X>(c : bool, t1 : X, t2 : X) returns (X);

axiom(forall<X> c:bool, t1:X, t2:X :: {ite(c,t1,t2)} c ==> ite(c,tl,
t2) == t1);

axiom(forall<X> c:bool, ti1:X, t2:X :: {ite(c,t1,t2)} !c ==> ite(c,tl,
t2) == t2);

function ite_value<X>(c : Value, t1 : X, t2 : X) returns (X) { ite(
of_G_Logical(of_V_General(c)),tl,t2) }

(1771777777777 7777777777777777777777777
// Constants

L1177 1000077700777 irr 777 7707077777777

const v_true : Value;
axiom (v_true == G(G_Logical(true)));

const v_false : Value;
axiom (v_false == G(G_Logical(false)));

[171171 000 77070777777777777777777711717177777

// Generation functions

[0 777777777777 77777717777°7777

function v_Int(n:int) returns (Value) { G(G_Integer(n)) }
function v_Logical(n:bool) returns (Value) { G(G_Logical(n)) }

function v_Text(s:String) returns (Value) { G(G_Text(s)) }

[1T11117777 77777 777777777777777771777777

// Pre- / Postconditions

L1177 7777777777777 7777771777777

function Integer(v:Value) returns (bool) {
is_General(v) && is_Integer(of_V_General(v))
}

121

function Logical(v:Value) returns (bool) {
is_General(v) && is_lLogical(of_V_General(v))
}

function Text(v:Value) returns (bool) {
is_General(v) && is_Text(of_V_General(v))
}

function Any(v:Value) returns (bool) {
is_valid(v)

}

function is_V_Null(v:Value) returns (bool) {
is Null(of_V_General(v))

}

[17111000 0777777777777 7777777777171717°7777

// Operators

[117177007777 7777770777777 77777777777777

function 0_GT(vl : Value, v2 : Value) returns (Value);

axiom (forall v1 : Value, v2 : Value :: { O0_GT(vi,v2) }
Integer(vl) && Integer(v2) ==> ((of_G_Integer(of_V_General(vl)) >
of_G_Integer(of_V_General(v2)) ==> 0_GT(vl,v2) == v_true) &&

(of_G_Integer(of_V_General(vl)) <= of_G_Integer(of_V_General(v2))
==> 0_GT(vl,v2) == v_false)));

procedure pO_GT(vl:Value,v2:Value) returns (v:Value)
requires Integer(vl) && Integer(v2);
ensures Logical(v) & & v == 0_GT(vl,v2);

{
v := 0_GT(vli,v2);

}

function O_LT(vl : Value, v2 : Value) returns (Value);

procedure pO_LT(vl:Value,v2:Value) returns (v:Value)
requires Integer(vl) && Integer(v2);

ensures Logical(v) & & v == 0_LT(v1l,v2);
{
v := 0_LT(vl,v2);
}
axiom (forall v1 : Value, v2 : Value :: { O_LT(v1,v2) }
Integer(vl) && Integer(v2) ==> (of_G_Integer(of_V_General(vl)) <
of_G_Integer(of_V_General(v2)) ==> 0_LT(vl,v2) == v_true) &&

(of_G_Integer(of_V_General(vl)) >= of_G_Integer(of_V_General(v2))
==> 0_LT(vl,v2) == v_false));

122

function O_EQ(v1:Value, v2:Value) returns (Value);

axiom (forall v1 : Value, v2 : Value :: { O_EQ(vi,v2) }
is_valid(vl) && is_valid(v2) ==> ((vl == v2 ==> 0_EQ(vl,v2) ==
v_true) &&
(vl !'= v2 ==> 0_EQ(v1,v2) == v_false)));
axiom (forall v1 : Value, v2 : Value :: { O_EQ(vi,v2) }
((vl == v2 <== 0_EQ(v1,v2) == v_true) &&
(vl != v2 <== 0_EQ(vl,v2) == v_false)));

function is_valid(v:Value) returns (bool) {is_General(v) || is_Entity
(v) || is_Coll(v) || is_List(v)}

function O_NE(vl:Value, v2:Value) returns (Value);

axiom (forall v1 : Value, v2 : Value :: { O_NE(v1,v2) }
is _valid(vl) && is_valid(v2) ==> ((v1l != v2 ==> 0 _NE(vl,v2) ==
v_true) &&

(vl == v2 ==> O_NE(vl,v2) == v_false)));

axiom (forall v1 : Value, v2 : Value :: { O_NE(vi,v2) }
((vl != v2 <== O_NE(v1l,v2) == v_true) &&
(vl == v2 <== O_NE(vl,v2) == v_false)));

function O_Sum(vl:Value,v2:Value) returns (v:Value);
axiom (forall v1 : Value, v2 : Value :: { O0_Sum(vi,v2) }
Integer(vl) && Integer(v2) ==>
O_Sum(vl,v2) ==
v_Int(of_G_Integer(of_V_General(vl))
+ of_G_Integer(of_V_General(v2))));

procedure pO_Sum(vl:Value,v2:Value) returns (v:Value)
requires Integer(vl) && Integer(v2);
ensures Integer(v) &% v == 0_Sum(vl,v2);
{
v := v_Int(of_G_Integer(of_V_General(vl))
+ of_G_Integer(of_V_General(v2)));
}

function O0_Minus(vl:Value,v2:Value) returns (v:Value);
axiom (forall v1 : Value, v2 : Value :: { O_Minus(vi,v2) }
Integer(vl) && Integer(v2) ==> O_Minus(vl,v2) ==
v_Int(of_G_Integer(of_V_General(vl)) - of_G_Integer(of_V_General(
v2))));

procedure pO_Minus(vl:Value,v2:Value) returns (v:Value)
requires Integer(vl) && Integer(v2);

123

ensures Integer(v) & & v == 0_Minus(vl,v2);
{
v := v_Int(of_G_Integer(of_V_General(vl)) - of_G_Integer(
of _V_General(v2)));
}

function O_Mult(vl:Value,v2:Value) returns (v:Value);
axiom (forall v1 : Value, v2 : Value :: { O_Mult(vi,v2) }
Integer(vl) && Integer(v2) ==> 0_Mult(vl,v2) ==
v_Int(of_G_Integer(of_V_General(vl)) * of_G_Integer(of_V_General(
v2))));

procedure pO_Mult(vl:Value,v2:Value) returns (v:Value)
requires Integer(vl) && Integer(v2);
ensures Integer(v) & v == 0_Mult(vi,v2);
{
v := v_Int(of_G_Integer(of_V_General(vl)) * of_G_Integer(
of_V_General(v2)));
}

function O0_And(vl:Value,v2:Value) returns (v:Value);
axiom (forall v1 : Value, v2 : Value :: { O_And(vi,v2) }
Logical(vl) && Logical(v2) ==> O0_And(vl,v2) ==
v_Logical(of_G_Logical(of_V_General(vl)) && of_G_Logical(
of_V_General(v2))));

procedure pO_And(vl:Value,v2:Value) returns (v:Value)
requires Logical(vl) && Logical(v2);
ensures Logical(v) && v == 0_And(vl,v2);
{
v := v_Logical(of_G_Logical(of_V_General(vl)) && of_G_Logical(
of_V_General(v2)));
}

function 0 _Or(vil:Value,v2:Value) returns (v:Value);
axiom (forall v1 : Value, v2 : Value :: { 0_Or(vi,v2) }
Logical(vl) && Logical(v2) ==> 0_Or(vl,v2) ==
v_Logical(of_G_Logical(of_V_General(vl)) || of_G_Logical(
of_V_General(v2))));

procedure pO_Or(vl:Value,v2:Value) returns (v:Value)
requires Logical(vl) && Logical(v2);
ensures Logical(v) & v == 0_Or(vl,v2);
{
v := v_Logical(of_G_Logical(of_V_General(vl)) || of_G_Logical(
of_V_General(v2)));

124

function O_Not(vl:Value) returns (v:Value);
axiom (forall v1 : Value :: { O_Not(vl) }
Logical(vl) ==> O_Not(vl) ==
v_Logical(!of_G_Logical(of_V_General(vl))));

procedure pO_Not(vl:Value) returns (v:Value)
requires Logical(vl);
ensures Logical(v) & & v == 0_Not(vl);

{

}

v := v_Logical(!of_G_Logical(of_V_General(vl)));

	1 Introduction
	1.1 Related work
	1.2 Contributions
	1.3 Overview

	2 DMinor
	2.1 DMinor language
	2.1.1 Values
	2.1.2 Types and expressions

	2.2 Semantics
	2.2.1 Big-step semantics in Coq
	2.2.2 Purity
	2.2.3 Environments and simultaneous substitution
	2.2.4 Relating operational and logical semantics.

	2.3 Examples
	2.3.1 Accumulate example
	2.3.2 Example of an execution error
	2.3.3 Incompleteness of the type system

	3 Boogie
	3.1 Boogie language
	3.2 Formalising a subset of Boogie
	3.2.1 Embedding of the logic
	3.2.2 Expressions
	3.2.3 The commands
	3.2.4 Calling convention for procedure calls
	3.2.5 Operational semantics
	3.2.6 Call-depth-indexed operational semantics

	3.3 The Hoare rules
	3.3.1 Definition of the semantic Hoare triples
	3.3.2 Lemmas for deriving semantic Hoare triples
	3.3.3 Procedure calls
	3.3.4 Syntactic Hoare triples

	3.4 Inverting Hoare rules
	3.4.1 Weakest precondition
	3.4.2 Inversion functions

	3.5 Verification condition generation

	4 Translation
	4.1 Translation of type-tests
	4.2 Translation
	4.3 Examples
	4.3.1 Accumulate example
	4.3.2 Example of an execution error
	4.3.3 Incompleteness of the type system

	4.4 Soundness proof
	4.4.1 Intuition of the proof
	4.4.2 Closedness of the expression in the proof
	4.4.3 Relation with Hoare logics
	4.4.4 Relation with verification condition generation
	4.4.5 Relation to the type system

	5 Implementation
	5.1 DMinor type-checker
	5.2 Boogie tool
	5.3 Some implementation details
	5.4 Axiomatisation
	5.4.1 The General sort
	5.4.2 The Value sort
	5.4.3 Axiomatisation of DMinor operations

	5.5 Quantitative comparison of DMinor and DVerify
	5.5.1 Test suite and precision
	5.5.2 Verification times
	5.5.3 Example where DVerify is more precise

	5.6 Qualitative comparison of DMinor and DVerify

	6 Conclusion
	6.1 Summary
	6.2 Future work
	6.2.1 Implementation
	6.2.2 Theory

	Bibliography
	A DMinor big-step semantics
	B Complete Coq definitions
	B.1 Imp.v
	B.1.1 Embedding of the logic
	B.1.2 Expressions
	B.1.3 The commands
	B.1.4 Calling convention for procedure calls
	B.1.5 Operational semantics
	B.1.6 Call-depth-indexed operational semantics

	B.2 Hoare.v
	B.2.1 Definition of the semantic Hoare triples
	B.2.2 Lemmas for deriving semantic Hoare triples
	B.2.3 Procedure calls
	B.2.4 Syntactic Hoare triples

	B.3 SubstState.v
	B.3.1 Simultaneous substitution
	B.3.2 Relating operational and logical semantics.

	B.4 Translate.v
	B.4.1 Lemmas for the soundness proof

	B.5 Soundness.v
	B.5.1 Additional lemmas for the entity case
	B.5.2 Additional lemmas for the accumulate case
	B.5.3 Closedness of the expression in the proof
	B.5.4 Relation with Hoare logics
	B.5.5 Relation with verification condition generation
	B.5.6 Relation to the type system

	C Complete axiomatisation

