
A Vision For Enhancing Security Of

Cryptography In Executables?

Otto Brechelmacher, Willibald Krenn, and Thorsten Tarrach

AIT Austrian Institute of Technology

Abstract. This paper proposes an idea on how to use existing tech-
niques from late stage software customization to improve the security of
software employing cryptographic functions. In our vision, we can verify
an implemented algorithm and replace it with a faster or more trusted
implementation if necessary. We also want to be able to add encryption to
binaries that currently do not employ any, or gain access to unencrypted
data if an application depends on encryption.
To corroborate the feasibility of our vision, we developed a prototype
that is able to identify cryptographic functions in highly optimized bi-
nary code and tests the identi�ed functions for functional correctness,
potentially also revealing backdoors.

1 Introduction

In recent years cryptography became almost universal in applications, both
commercial and open-source. Every application securely communicating with
its cloud server relies on a full suite of symmetric and asymmetric encryption
algorithms. Hence, running a closed-source application employing cryptography
requires one to trust the software developer to a) consistently use cryptography,
b) have chosen a good crypto-library and use it correctly, and c) not to have
built-in a backdoor that leaks sensitive information.

Especially when dealing with software running in a sensitive environment it
is necessary to thoroughly inspect the software for potential vulnerabilities and
threats. We focus on the correctness analysis of the software using the binary
code as unwanted functionality can be introduced during the compilation pro-
cess [1], the original source code or libraries are not available, or one cannot
re-produce bit-matching binary images from the supplied sources. For similar
reasons, i.e. no source available or highest level of trust, any late stage cus-
tomization has to be performed on the machine-code level. In the following, we
focus on cryptography routines because they are often exposed to the network
and present a major part of the attack surface of an application. Also, this spe-
ci�c domain allows us to use a lot of domain-speci�c knowledge in the attempted
automated analysis.

Once some piece of software fails the veri�cation, information about vulnera-
bilities becomes public, or encryption needs to be added due to changing security

? The research leading to this paper has received funding from the AMASS project
(H2020-ECSEL no. 692474).



requirements, the software needs to be patched or replaced. In order to save on
the re-certi�cation/veri�cation e�ort, we propose to automatically address the
shortcomings in the binary �le. Put di�erently, we do not only want to analyze
binaries, but also �x certain problems automatically or even add encryption to
binaries that do not currently employ encryption, e.g. adding HTTPS to a legacy
application.

While one source of vulnerabilities are sophisticated, deliberate backdoors,
we believe a signi�cant portion of �aws are accidental. Developers typically are
not very knowledgeable in cryptography. A common pattern these days is that
developers use the �rst seemingly working code-snipped from some blog or stack-
exchange answer for their code. There are numerous problems when using cryp-
tography in this naïve way.

The �rst problem is that developers may use a home-grown implementation
of their desired cipher or some not very well maintained library. Such home-
grown implementations will not contain hardening against side-channel attacks
and will likely contain unknown bugs or weaknesses [2]. The second problem
is connected to the use of statically linked libraries. Here, one issue is that
the user of the software cannot easily update the version of the library used,
once a vulnerability has been found. Further, the user has no guarantees (and
is generally unable to check) whether the software supplier has used the latest
version of the library when building the release. As security issues are regularly
found and �xed in libraries, this is a major problem. Lastly, even the best crypto
library may be used incorrectly. There are numerous topics around encryption,
such as key management or safe storage and erasure of the key in memory that
a developer can get wrong.

In the past numerous �aws concerning cryptography have been found in
software. Here are some of the more interesting cases. Our �rst example has
been revealed by the Chaos Computer Club of Germany (CCC) in software used
by the German government to spy on suspected criminals. On close analysis of
the software, which is also known as the federal trojan horse, the CCC discovered
that the trojan used the same hard-coded AES-key to secure the data transfer
to the control server for years. The key can now be found on the internet [3].
Hence, unauthorized parties would have been able read the data transferred.
The second example is the well-known Heartbleed bug [4]. This bug may still
be present in applications that were statically linked with any of the vulnerable
OpenSSL versions. Here, we would want an automated upgrade of the library
linked into the a�ected applications to �x the issue. A third example shows
another source for weaknesses when using cryptographic functions: the random
number generator. The best crypto implementation does not help if the key is
predictable. This was the case in Debian's OpenSSL package, that was able to
generate only 32 768 di�erent keys [5]. As before, we would like to be able to
address this bug by replacing the random generator used in the application by
a trusted one. These are just a few examples, but they illustrate a need to focus
on cryptography as part of a software security analysis and life cycle. They also
show that binary analysis is needed because merely analyzing the input and
output of the application may not reveal a faulty crypto implementation.



We are now ready to present our vision in Section 2, before arguing for its
feasibility in Section 3 by presenting already existing work we can build on.
Finally, we conclude this idea paper in Section 4.

2 The Vision

As we have shown in Section 1, the current treatment of cryptography in the
life-cycle of executable programs is far from optimal. Put shortly, the user has no
e�cient way of checking whether the employed algorithms or library versions are
up-to-date, whether the cryptographic primitives are used correctly, or whether
the advertised algorithms are used at all. Even worse, once vulnerabilities are
discovered there is no easy way to �x the a�ected executables. Finally, there is
no way to add additional functionality to the application.

Our vision is to address these shortcomings with a platform for analyzing,
rewriting, and embedding cryptographic functions in binaries. By 'binary' we
mean a compiled program, where we don't have access to the source code or
any debug information. We understand the term cryptography here in its wider
sense to also include random number generators needed to generate keys, cipher
modes (counter mode, cipher feedback mode, etc.), and cryptographic protocols
like TLS. We envision our platform to have the following features:

� Analyze cryptographic functions in the binary for correctness and potential
backdoors. The analysis should reveal if the algorithm computes the correct
result, has potential information leaks, and if it is vulnerable to known at-
tacks.

� Replace cryptographic functions in the binary with alternate implementa-
tions.

� Insert cryptographic functionality, which is most useful for legacy binaries.

While these features seem trivial, achieving them is far from it. We will use a
few scenarios to illustrate common problems and how our platform would help.

Unknown binary using crypto. Assuming we bought an application that
employs the Advanced Encryption Standard (AES) according to the data sheet.
In this situation we need to check whether AES really is being used and whether
there are (known) vulnerabilities, weaknesses, or leaks with this version. Hence
in this scenario we could use the analysis capabilities of our platform. In case
we are not satis�ed with the quality of the implementation, we can then replace
the existing AES implementation with calls to our own trusted library.

Legacy application without patches. Another important situation is the
maintenance of legacy applications without vendor support. Be it a statically
linked application or an application dynamically linked to some outdated version
of some cryptographic library that contains known vulnerabilities. In order to
develop our own patch for the application, our platform can be used. In the case



of an statically linked application, the platform will supply the means to replace
the original library version with an updated one. If the application has a dynamic
dependency one might be able to �nd a drop-in replacement if the interface
did not change. If, however, there was some interface change, our platform will
help with its insert and replacement functionality to add adapter code so the
application can use the interface incompatible new version of the library.

Adding encryption. A further use case we envision for our platform is to
add encryption to executables. This could be done by adding transient encryp-
tion/decryption when saving/loading �les but could also mean securing network
connections in non-standard ways. For example we may want to enable a legacy
application to encrypt its network tra�c. The encryption could be added to the
data passed to the send function of libc and the decryption to the data returned
by the receive function. We could provide standard packages that also take care
of key derivation between peer, for example as part of the connect call. Similarly
employing steganography or adding direct support for onion routing techniques
would bene�t from our platform.

Weakening encryption. While not in our primary focus, our platform could
even be used to weaken a cryptographic implementation. This could be useful in
case of reverse engineering, i.e. malware analysis. An important part of reverse
engineering is the network tra�c, which may be di�cult to analyze if it is TLS
encrypted with certi�cate pinning. Our framework would save the analyst a lot
of time by simply leaking the encryption key to a �le.

All of the discussed scenarios can be realized manually with dedicated per-
sonnel. Our platform, however, should automate the work involved as much as
possible. While this is no easy feat, we think it is viable and give an overview of
already available building blocks in the following section.

3 Available Already

Quite a number of building blocks for our vision are already in place. On the one
hand there is a large body of research and tools that deal with binary analysis
and manipulation, on the other hand we started working towards our platform
for Linux/x86-64 and gained �rst, encouraging results.

In the following sub-sections, we give a brief overview of available tools and
techniques that help realizing our vision. Starting from tools helping with binary
rewriting and analysis, we refer to techniques used for specifying machine code
that needs replacement before describing our own contributions.

3.1 Supporting Tools

Binary rewriting We bene�t from a large body of work in runtime manipula-
tion of machine code and binary rewriting. We use DynamoRIO [6] to inject code



and modify the control �ow of binaries during runtime. While this is ideal for
prototyping we would eventually want to rewrite the binaries to persist changes
in it. Rewriting binaries is challenging because the control �ow can be unpre-
dictable due to exceptions and signals and because some parts of the code may
be only revealed at runtime due to Just-In-Time compilation or encryption.
Thankfully many of these problem are already addressed, e.g. in Zipr++ [7] and
RL-Bin [8].

Binary analysis There are two approaches to analyzing a binary. One is to
observe the binary during its normal operation at runtime. That is suitable to
understand the normal operation of the binary, but not to �nd a backdoor. The
latter can be found for example by symbolic analysis, a technique to reach all
program locations. The downside is that such analysis is inherently slow. Since
we expect the crypto routines to be part of the normal operation of the binary
our prototype uses runtime analysis. We use DynamoRIO to record a trace that
we later analyze. A trace means the sequence of all machine code instructions
that were executed during a single run of the binary under observation.

There are a few symbolic analysis frameworks for machine code, including
S2E [9], angr [10], and libtriton [11]. We also showed that it is feasible to use
KLEE [12] for symbolic analysis if the machine code is �rst lifted to LLVM
intermediate language. A task that is non-trivial in itself and we completed only
for simple binaries.

Speci�cation We specify functions and their input/output behavior with the
help of model programs. That means we have a model of the intended function-
ality as a speci�cation and are searching for functions that, when given the same
input, will return the same value. Hence our speci�cation does not use pairs
of inputs and outputs, but a reference implementation of the function we are
looking for. To our knowledge this speci�cation approach is novel in the �eld.

Another speci�cation method is to use seed functions [13]. Seed functions
are functions in the binary one wants to remove by removing the function and
all functions that depend on it. These functions can specify a function in a
speci�c binary, but cannot describe the same functionality over all binaries. An
alternative is dual slicing [14] where a feature is de�ned by the di�erence in two
program executions. So the program is started with two di�erent parameters and
the function calls that are present in only one trace are the functions of interest.

3.2 First Results

Using these building blocks we built a prototype demonstrating parts of our
vision.

Identi�cation Our speci�cation is given in the form of an implementation of
the crypto functions we are looking for. We use these to �nd the functions of
interest in the trace we recorded. The naïve approach of testing all functions



called in the trace brute-force does not scale. We therefore employ domain-
knowledge to narrow the search: A candidate function can often be identi�ed
by its use of certain constants (SBox in AES), speci�c CPU instructions (AES-
NI), or heuristically by a density of bit-level operations in the code. To test
the latter we use a machine-learning approach that is able to identify functions
containing cryptographic operations with high con�dence. A di�erent approach
is implemented in CryptoHunt [15] and the Software Analysis Workbench [16],
where the authors translate the binary program into logical formulas that can
be compared to a given reference implementation with an SMT solver.

Function identi�cation is further complicated because we also need the order
of parameters of the function in order to replace or invoke it. Again a brute-force
attempt would be very slow, so we again use domain knowledge: The parameters
we are interested in (plaintext, key, ciphertext) are pointers to memory bu�ers
of at least 16 byte length. That signi�cantly reduces the number of parameters
we need to test.

Testing cryptographic implementations Knowing the exact interface we
can test the cryptographic implementation in the binary. We support two test
modes:

Firstly, we support supervised encryption, which means that we check after
every invocation of the encryption routine if the returned result is correct. This
is done by running in parallel a trusted implementation. At this point we could
also replace the entire crypto routine with the trusted implementation. Currently
this check is done at runtime using DynamoRIO.

The second test mode is to run the encryption function against a list of
well-known input-output pairs. In case of AES such pairs are provided by the
NIST [17]. This works during runtime by waiting until the encryption function is
�rst invoked and then repeatedly invoking just the encryption function with the
chosen inputs and comparing the outputs to the speci�ed ones. Any deviation is
an indication that the encryption is not implemented correctly. This is essentially
a from of di�erential testing [18].

Symbolic Analysis We already use symbolic analysis to �nd so-called logic
bombs in binaries. A logic bomb is a malicious action hidden in the binary and
triggered on certain conditions. In terms of crypto this could for example be a
backdoor leaking the key. A �rst attempt working on source code was already
published [19] and we are currently busy porting this to the machine code level.

Replacing the encryption algorithm The identi�cation of the encryption
algorithm and its parameters is the �rst important step to allow replacing the
encryption algorithm. Our framework could be trivially extended to make the
replacement at runtime with DynamoRIO. This is because we already inter-
cept the call to crypto functions for testing. Instead of running both functions
and comparing the result, one could simply return the result of the reference



implementation and never invoke the original function. While the runtime ma-
nipulation of the binary is perfect for testing, it is not desirable as a permanent
solution due to the overhead. Therefore we need the binary rewriting tools out-
lined in Section 3.1 to persist changes in the binary itself.

Inserting encryption To insert encryption we need to specify insertion points,
e.g. function calls to libc. libc is a standard C library used by virtually every
Linux application. We can replace these calls with a transparent wrapper to
encrypt data before it is passed to libc and decrypting data returned by libc.
This could be done when writing data to a �le or to a network socket. Of course
this would be further complicated by adding key management and exchange.
To protect the keys in memory from the original application we can use novel
CPU-backed technologies that isolate certain parts of memory, such as Intel
SGX.

3.3 Evaluation

Our current prototype implements the complete testing toolchain for AES: It
has the ability to record traces, �nd the addresses and parameters of the crypto
functions, and test the crypto function using NIST vectors. We implemented
several models for AES using two modes (ECB and CTR) and various keylengths.

We can not only process the small toy examples we created for numerous ways
to implement AES, but also the aescrypt2 sample program from the mbedTLS
library [20]. All these example were compiled with GCC optimization level 3
and without symbols. The aescrypt2 example is 180kb in size and contains more
than 7000 assembler instructions.

4 Conclusion

We have presented our vision on how to address the challenges posed by cryptog-
raphy in the life-cycle of executable programs. In order to automate the process
of testing and adapting executables as much as possible, we propose to build a
platform capable of analyzing, replacing, and inserting cryptographic functions
with the goal of achieving a high level of automation. For this, we rely on a mix
of techniques known from binary analysis and rewriting, program veri�cation,
model-based testing, and compiler construction.

Our envisioned platform will help analysts �nd �awed cryptographic imple-
mentations and replace them by trusted ones or even insert encryption function-
ality into executable programs. We have made promising �rst steps towards our
vision by implementing parts of the platform on the Linux-x86-64 platform and
applying it to di�erent applications relying on AES. Our lessons learnt led us to
new approaches for speeding up solving the identi�cation problem of functions
and parameters, which we are implementing right now. We are also working
on improving the symbolic analysis to make it more scalable and applicable to
larger executables. Finally, we want to use rewriting techniques to make perma-
nent changes to binaries as the next step in going after our vision.



References

1. Thompson, K.: Re�ections on trusting trust. Commun. ACM 27(8) (August 1984)
761�763

2. Egele, M., Brumley, D., Fratantonio, Y., Kruegel, C.: An empirical study of cryp-
tographic misuse in android applications. In: CCS '13. 73�84

3. CCC: ANALYSE EINER REGIERUNGS-MALWARE. Technical report, Chaos
Computer Club (2011)

4. Codenomicon, Google-Security: CVE-2014-0160. Available from MITRE, CVE-ID
CVE-2014-0160. (December 3 2013)

5. Bello, L.: CVE-2008-0166. Available from MITRE, CVE-ID CVE-2008-0166. (Jan-
uary 9 2008)

6. Bruening, D., Zhao, Q., Amarasinghe, S.: Transparent dynamic instrumentation.
ACM SIGPLAN Notices 47(7) (2012) 133�144

7. Hiser, J., Nguyen-Tuong, A., Hawkins, W., McGill, M., Co, M., Davidson, J.:
Zipr++: Exceptional binary rewriting. In: FEAST '17. 9�15

8. Majlesi-Kupaei, A., Kim, D., Anand, K., ElWazeer, K., Barua, R.: RL-Bin, robust
low-overhead binary rewriter. In: FEAST '17. 17�22

9. Chipounov, V., Kuznetsov, V., Candea, G.: The s2e platform: Design, implemen-
tation, and applications. TOCS 30(1) (2012) 2

10. Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A.,
Grosen, J., Feng, S., Hauser, C., Kruegel, C., Vigna, G.: SoK: (State of) The Art
of War: O�ensive Techniques in Binary Analysis. In: S&P '16

11. Saudel, F., Salwan, J.: Triton: A dynamic symbolic execution framework. In:
Symposium sur la sécurité des technologies de l'information et des communications,
SSTIC, France, Rennes, June 3-5 2015, SSTIC (2015) 31�54

12. Cadar, C., Dunbar, D., Engler, D.R., et al.: Klee: Unassisted and automatic gen-
eration of high-coverage tests for complex systems programs. In: OSDI. Volume 8.
(2008) 209�224

13. Jiang, Y., Zhang, C., Wu, D., Liu, P.: Feature-based software customization: Pre-
liminary analysis, formalization, and methods. In: HASE '16. 122�131

14. Kim, D., Sumner, W.N., Zhang, X., Xu, D., Agrawal, H.: Reuse-oriented reverse
engineering of functional components from x86 binaries. In: ICSE '14. 1128�1139

15. Xu, D., Ming, J., Wu, D.: Cryptographic function detection in obfuscated binaries
via bit-precise symbolic loop mapping. In: S&P '17. 921�937

16. Dockins, R., Foltzer, A., Hendrix, J., Hu�man, B., McNamee, D., Tomb, A.: Con-
structing semantic models of programs with the software analysis workbench. In:
VSTTE '16. 56�72

17. Bassham III, L.E.: The advanced encryption standard algorithm validation suite
(aesavs). NIST Information Technology Laboratory (2002)

18. McKeeman, W.M.: Di�erential testing for software. Digital Technical Journal
10(1) (1998) 100�107

19. Papp, D., Buttyán, L., Ma, Z.: Towards semi-automated detection of trigger-based
behavior for software security assurance. In: SAW '18

20. ARM: mbedtls. https://tls.mbed.org/

https://tls.mbed.org/

	A Vision For Enhancing Security Of Cryptography In Executables

